Research interests

I am a theoretical scientist focusing on the topic of magnetic properties on 2D curved nanomembrane and 3D heterostructure. Such materials are key building blocks for developing spintronics. They exhibit novel properties due to the nonplanar geometry on nanomembrane and interfaces in heterostructure. My research skills are analytical method and first principle calculation. My research goal is to find out a very clear physical picture to assist people in controlling and engineering the desirable magnetic and transport properties on these novel materials.

My studies focus on:

Nanomagnetism, Magnetoresistance, Magnetoanisotropy, Quantum Dynamics of Nanoarchitecture, Spin orbital coupling, Spin Hall effect, Topological Insulator

Selected Publications

1.  C. H. Chang+, T. R. Chang+, and H. T. Jeng*, “Newtype Large Rashba-Splitting in Quantum-Well-State induced by Spin-Chirality in Metal/Topological-Insulator” accepted by NPG Asia Material (2016).

2.  C. H. Chang* and C. Ortix*, "Ballistic anisotropic magnetoresistance in core-shell nanowires and rolled-up nanotubes", International Journal of Morden Physics B, online ready (2016). Review article.

3.  C. H. Chang*+, K. P. Dou+, Y. C. Chen, T. M. Hong, and C. C. Kaun*, "Engineering the interlayer exchange coupling in magnetic trilayers" Scientific Reports 5, 16844 (2015).

4.  C. H. Chang*, J. van den Brink, and C. Ortix, "Strongly Anisotropic Ballistic Magnetoresistance in Compact 3D Semiconducting Nanoarchitectures", Phys. Rev. Lett. 113, 227205 (2014). PRL Editor suggestion.

5.  C. H. Chang* and T. M. Hong*, “Switch off the magnetic exchange coupling by quantum resonances”, Phys. Rev. B 85, 214415 (2012).

6.  C. H. Chang and T. M. Hong*, “Interlayer exchange coupling beyond the proximity force approximation”, Phys. Rev. B 82, 094415 (2010). *Selected for the Virtual Journal of Nanoscale Science & Technology 22 (12) (2010).

7.  C. H. Chang, S. M. Wang, and T. M. Hong*, “Origin of branch points in the spectrum of PT-symmetric periodic potentials”, Phys. Rev. A 80, 042105 (2009).

8.  C. H. Chang and T. M. Hong*, “Interlayer coupling enhanced by the interface roughness”, Phys. Rev. B 79, 054415 (2009).

9.  C. H. Chang and T. M. Hong*, “Spin-glass-like behavior caused by Mn-riched Mn(Ga)As nanoclusters in GaAs”, Appl. Phys. Lett. 93, 212106 (2008). *Selected for the Virtual Journal of Nanoscale Science & Technology 18 (23) (2008).

 

*corresponding author, +co-first author.