Selected Publications on ...

Transport properties of quantum magnets

Bond disorder and spinon heat transport in the S = 12 Heisenberg spin chain compound Sr2CuO3: from clean to dirty limits,
A. Mohan, N. Sekhar Beesetty, N. Hlubek, R. Saint-Martin, A. Revcolevschi, B. Büchner, and C. Hess,
Phys. Rev. B 89, 104302 (2014). DOI

Phonon-magnon interaction in low dimensional quantum magnets observed by dynamic heat transport measurements,
M. Montagnese, M. Otter, X. Zotos, D. A. Fishman, N. Hlubek, O. Mitiashkin, C. Hess, R. Saint-Martin, S. Singh, A. Revcolevschi, and P. H. M. van Loosdrecht,
Phys. Rev. Lett. 110, 147206 (2013). DOI

Bond disorder and breakdown of ballistic heat transport in the spin-1/2 antiferromagnetic Heisenberg chain as seen in Ca-doped SrCuO2,
N. Hlubek, P. Ribeiro, R. Saint-Martin, S. Nishimoto, A. Revcolevschi, S.-L. Drechsler, G. Behr, J. Trinckauf, J. E. Hamann-Borrero, J. Geck, B. Büchner, and C. Hess,
Phys. Rev. B 84, 214419 (2011). DOI

Ballistic heat transport of quantum spin excitations as seen in SrCuO2,
N. Hlubek, P. Ribeiro, R. Saint-Martin, A. Revcolevschi, G. Roth, G. Behr, B. Büchner, and C. Hess,
Phys. Rev. B 81, 020301(R) (2010). DOI

Linear Temperature Dependence of the Magnetic Heat Conductivity in CaCu2O3,
C. Hess, H. ElHaes, A. Waske, B. Büchner, C. Sekar, G. Krabbes, F. Heidrich-Meisner, and W. Brenig,
Phys. Rev. Lett. 98, 027201 (2007). DOI

Heat conduction in low-dimensional quantum magnets,
C. Hess,
Eur. Phys. J. - Special Topics 151, 73 (2007). DOI

Magnon heat conductivity and mean free paths in two-leg spin ladders: A model-independent determination,
C. Hess, P. Ribeiro, B. Büchner, H. ElHaes, G. Roth, U. Ammerahl, and A. Revcolevschi,
Phys. Rev. B 73, 104407 (2006). DOI

Magnon Heat Transport in Doped La2CuO4,
C. Hess, B. Büchner, U. Ammerahl, L. Colonescu, F. Heidrich-Meisner, W. Brenig, and A. Revcolevschi,
Phys. Rev. Lett. 90, 197002 (2003). DOI

Magnon heat transport in (Sr,Ca,La)14Cu24O41,
C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-Meisner, W. Brenig, and A. Revcolevschi,
Phys. Rev. B 64, 184305 (2001). DOI

Unconventional superconductivity

Interband Quasiparticle Scattering in Superconducting LiFeAs Reconciles Photoemission and Tunneling Measurements,
C. Hess, S. Sykora, T. Hänke, R. Schlegel, D. Baumann, V. B. Zabolotnyy, L. Harnagea, S. Wurmehl, J. van den Brink, and B. Büchner,
Phys. Rev. Lett. 110, 017006 (2013). DOI

Probing the Unconventional Superconducting State of LiFeAs by Quasiparticle Interference,
T. Hänke, S. Sykora, R. Schlegel, D. Baumann, L. Harnagea, S. Wurmehl, M. Daghofer, B. Büchner, J. van den Brink, and C. Hess,
Phys. Rev. Lett. 108, 127001 (2012). DOI

Resistivity and Hall effect of LiFeAs: Evidence for electron-electron scattering,
O. Heyer, T. Lorenz, V. B. Zabolotnyy, D. V. Evtushinsky, S. V. Borisenko, I. Morozov, L. Harnagea, S. Wurmehl, C. Hess, and B. Büchner,
Phys. Rev. B 84, 064512 (2011). DOI

Unusual Nernst effect and spin density wave precursors in superconducting LaFeAsO1xFx,
A. Kondrat, G. Behr, B. Büchner, and C. Hess,
Phys. Rev. B 83, 092507 (2011). DOI

Nernst effect of stripe ordering La1.8xEu0.2SrxCuO4,
C. Hess, E. M. Ahmed, U. Ammerahl, A. Revcolevschi, and B. Büchner
Eur. Phys. J. - Special Topics 188, 103 (2010). DOI

Imaging the essential role of spin-fluctuations in high-Tc superconductivity,
N. Jenkins, Y. Fasano, C. Berthod, I. Maggio-Aprile, A. Piriou, E. Giannini, B. W. Hoogenboom, C. Hess, T. Cren, and Ø. Fischer,
Phys. Rev. Lett. 103, 227001 (2009). DOI

Iron-based superconductors: Vital clues from a basic compound,
B. Büchner and C. Hess,
Nature Materials – News and Views 8, 615 (2009). DOI

The intrinsic electronic phase diagram of iron-oxypnictide superconductors,
C. Hess, A. Kondrat, A. Narduzzo, J. E. Hamann-Borrero, R. Klingeler, J. Werner, G. Behr, and B. Büchner,
Europhys. Lett. 87, 17005 (2009). DOI

Synthesis and physical properties of LaO1xFxFeAs,
A. Kondrat, J. E. Hamann-Borrero, N. Leps, M. Kosmala, O. Schumann, J. Werner, G. Behr, M. Braden, R. Klingeler, B. Büchner, and C. Hess,
Eur. Phys. J. B 70, 461 (2009). DOI

Electronic phase diagram of the LaO1xFxFeAs superconductor,
H. Luetkens, H.-H. Klauss, M. Kraken, F. J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, and B. Büchner,
Nature Materials 8, 305 (2009). DOI

Collective phenomena of charge, spin and orbitals

Half-metallic ferromagnetism with unexpectedly small spin splitting in the Heusler compound Co2FeSi,
D. Bombor, C. G. F. Blum, O. Volkonskiy, S. Rodan, S. Wurmehl, C. Hess, and B. Büchner,
Phys. Rev. Lett. 110, 066601 (2013). DOI

Bridging Charge-Orbital Ordering and Fermi Surface Instabilities in Half-Doped Single-Layered Manganite La0.5Sr1.5MnO4,
D. V. Evtushinsky, D. S. Inosov, G. Urbanik, V. B. Zabolotnyy, R. Schuster, P. Sass, T. Hänke, C. Hess, B. Büchner, R. Follath, P. Reutler, A. Revcolevschi, A. A. Kordyuk, and S. V. Borisenko,
Phys. Rev. Lett. 105, 147201 (2010). DOI

Non-Resonant X-ray Magnetic Scattering on Rare-Earth Iron Borates RFe3(BO3)4,
J.E. Hamann-Borrero, M. Philipp, O. Kataeva, M. v. Zimmermann, J. Geck, R. Klingeler, A. Vasiliev, L. Bezmaternykh, B. Büchner, and C. Hess,
Phys. Rev. B 82, 094411 (2010). DOI

Magnon-Hole Scattering and Charge Order in Sr14xCaxCu24O41,
C. Hess, H. ElHaes, B. Büchner, U. Ammerahl, M. Hücker, and A. Revcolevschi,
Phys. Rev. Lett. 93, 027005 (2004). DOI

Thermal and Electronic Transport Properties and Two-Phase Mixtures in
La58xPrxCa38MnO3,
K-H. Kim, M. Uehara, C. Hess, P.A. Sharma, and S.-W. Cheong,
Phys. Rev. Lett. 84, 2961 (2000). DOI

Phonon thermal conductivity and stripe correlations in La2xSrxNiO4 and Sr1.5La0.5MnO4,
C. Hess, B. Büchner, M. Hücker, R. Gross, and S.-W. Cheong,
Phys. Rev. B 59, R10397 (1999). DOI

Carbon based materials and nanostructures

Structural study of monolayer cobalt phthalocyanine adsorbed on graphite,
M. Scheffler, L. Smykalla, D. Baumann, R. Schlegel, T. Hänke, M. Toader, B. Büchner, M. Hietschold, and C. Hess,
Surface Science 608, 55 (2013). DOI

Probing local hydrogen impurities in quasi-free-standing graphene,
M. Scheffler, D. Haberer, L. Petaccia, M. Farjam, R. Schlegel, D. Baumann, T. Hänke, A. Grüneis, M. Knupfer, C. Hess, and B. Büchner,
ACS Nano 6, 10590 (2012). DOI

Graphene Synthesis on Cubic SiC/Si Wafers - Perspectives for Mass Production of Graphene-based Electronic Devices,
V. Y. Aristov, G. Urbanik, K. Kummer, D. V. Vyalikh, O. V. Molodtsova, A. B. Preobrajenski, C. Hess, T. Hänke, B. Büchner, I. Vobornik, J. Fujii, G. Panaccione, Y.A. Ossipyan, and M. Knupfer,
Nano Lett. 10, 992 (2010). DOI

Topological insulators

Quasiballistic Transport of Dirac Fermions in a Bi2Se3 Nanowire,
J. Dufouleur, L. Veyrat, A. Teichgräber, S. Neuhaus, C. Nowka, S. Hampel, J. Cayssol, J. Schumann, B. Eichler, O. G. Schmidt, B. Büchner, and R. Giraud,
Phys. Rev. Lett. 110 186806 (2013). DOI

Oxide heterostructures

A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3,
Y. Z. Chen, N. Bovet, F. Trier, D. V. Christensen, F. M. Qu, N. H. Andersen, T. Kasama, W. Zhang, R. Giraud, J. Dufouleur, T. S. Jespersen, J. R. Sun, A. Smith, J. Nygard, L. Lu, B. Büchner, B. G. Shen, S. Linderoth, and N. Pryds,
Nature Communications 4, 1371 (2013). DOI

Nanomagnets based on carbon nanotubes

Room temperature magnetometry of an individual iron filled carbon nanotube acting as nanocantilever,
S. Philippi, U. Weissker, T. Mühl, A. Leonhardt, and B. Büchner,
J. Appl. Phys. 110, 084319 (2011). DOI

Current-Induced Mass Transport in Filled Multiwalled Carbon Nanotubes,
M. Löffler, U. Weissker, T. Mühl, T. Gemming, J. Eckert, Jürgen, and B. Büchner,
Advanced Materials 23, 541 (2011). DOI

Robust determination of Young’s modulus of individual carbon nanotubes by quasi-static interaction with Lorentz forces,
M. Löffler, U. Weissker, T. Mühl, T. Gemming, and B. Büchner,
Ultramicroscopy 111, 155 (2011). DOI

An individual iron nanowire-filled carbon nanotube probed by micro-Hall magnetometry,
K. Lipert, S. Bahr, F. Wolny, P. Atkinson, U. Weissker, T. Mühl, O. G. Schmidt, B. Büchner, and R. Klingeler,
Appl. Phys. Lett. 97, 212503 (2010). DOI

Magnetization reversal in an individual 25 nm iron-filled carbon nanotube,
P. Banerjee, F. Wolny, D. V. Pelekhov, M. R. Herman, K. C. Fong, U. Weissker, T. Mühl, Yu. Obukhov, A. Leonhardt, B. Büchner, and P. C. Hammel,
Appl. Phys. Lett. 96, 252505 (2010). DOI

Perpendicular magnetization of long iron carbide nanowires inside carbon nanotubes due to magnetocrystalline anisotropy,
U. Weissker, M. Löffler, F. Wolny, M. U. Lutz, N. Scheerbaum, R. Klingeler, T. Gemming, T. Mühl, A. Leonhardt, and B. Büchner,
J. Appl. Phys. 106, 054909 (2009). DOI

Development of MFM probes

Introduction of a co-resonant detection concept for mechanical oscillation-based sensors,
C.F. Reiche, J. Körner, B. Büchner, T. Mühl,
Nanotechnology 26, 335501 (2015). DOI

Bidirectional quantitative force gradient microscopy,
C.F. Reiche, S. Vock, V. Neu, L. Schultz, B. Büchner, T. Mühl,
New J. Phys. 17, 13014 (2015). DOI

Magnetic force microscopy sensors providing in-plane and perpendicular sensitivity,
T. Mühl, J. Körner, S. Philippi, C. F. Reiche, A. Leonhardt, and B. Büchner,
Appl. Phys. Lett. 101, 112401 (2012). DOI

Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe,
F. Wolny, Y. Obukhov, T. Mühl, U. Weissker, S. Philippi, A. Leonhardt, P. Banerjee, A. Reed, G. Xiang, R. Adur, I. Lee, A. J. Hauser, F. Y. Yang, D. V. Pelekhov, B. Büchner, and P. C. Hammel,
Ultramicroscopy 111, 1360 (2011). DOI

Monopolelike probes for quantitative magnetic force microscopy: Calibration and application,
S. Vock, F. Wolny, T. Mühl, R. Kaltofen, L. Schultz, B. Büchner, C. Hassel, J. Lindner, and V. Neu,
Appl. Phys. Lett. 97, 252505 (2010). DOI

Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy,
F. Wolny, T. Mühl, U. Weissker, K. Lipert, J. Schumann, A. Leonhardt, and B. Büchner,
Nanotechnology 21, 435501 (2010). DOI

Magnetic force microscopy measurements in external magnetic fields-comparison between coated probes and an iron filled carbon nanotube probe,
F. Wolny, T. Mühl, U. Weissker, A. Leonhardt, U. Wolff, D. Givord, and B. Büchner,
J. Appl. Phys. 108, 013908 (2010). DOI

Iron-filled carbon nanotubes as probes for magnetic force microscopy,
F. Wolny, U. Weissker, T. Mühl, A. Leonhardt, S. Menzel, A. Winkler, and B. Büchner,
J. Appl. Phys. 104, 064908 (2008). DOI

Magnetic force microscopy sensors using iron-filled carbon nanotubes,
A. Winkler, T. Mühl, S. Menzel, and R. Kozhuharova-Koseva, S. Hampel, A. Leonhardt, and B. Büchner,
J. Appl. Phys. 99, 104905 (2006). DOI