Research

Andy Thomas' group uses deposition techniques such as atomic layer deposition and (magnetron) sputtering to prepare thin film heterostructures. In addition, we utilize focussed ion beam cutting to obtain micro structures out of single crystal bulk materials provided by our collaborators. Our main focus are quantum materials such as topological insulators, Weyl semimetals and 2D materials. After in-situ characterization, the stacks are further processed by lithographic patterning to receive transport devices. These devices are measured at low temperatures (>2K) and magnetic fields (<14T), in particular, the longitudinal and transverse transport response to an electric field and/or a temperature gradient are evaluated (conductance, Hall, Nernst, Seebeck …). In the future, we will make use of the 3-d conformity of atomic layer deposition to prepare sophisticated devices, notably in the field of magnetism. Here, spin textures and magnon transport are predicted to be affected by curved surfaces.