Annual Report 2017
Contents

Review of 2017

Facts & Figures

Highlights from Research Areas

Research Area 1: Functional Quantum Materials
9 Evidence for a magnetic field induced nematic liquid in the spin chain LiCuSbO₄
13 Correlation induced electron-hole asymmetry in quasi-2D iridates
17 Large, three-dimensional and faceted LaFeAsO crystals
20 Nanotubular spin-waves conduits
23 Generic coexistence of Fermi arcs and Dirac cones on the surface of time-reversal invariant Weyl semimetals
27 Evidence for a field-induced quantum spin liquid in α-RuCl₃
31 Magnetic characterization in the TEM: Skyrmions and electron vortex beams

Research Area 2: Function through Size
35 Sperm-tetrapod micromotor for targeted drug delivery
39 Metastable phase formation in undercooled Fe-Co melts under terrestrial and microgravity conditions

Research Area 3: Quantum Effects at the Nanoscale
43 Magnetism in iron nanoislands tuned by epitaxial growth and magneto-ionic reactions
47 Addressable and color-tunable piezophotonic light-emitting stripes
51 A quantum material that emits pairs of entangled photons on demand
55 Single-electron lanthanide- lanthanide bonds inside the fullerene cage: en route to unusual electronic and magnetic properties
59 Theoretical prediction of a giant anisotropic magnetoresistance in carbon nanoscrolls
63 Chemical gating of a weak topological insulator: Bi₁₃Rh₁₉I₉

Research Area 4: Towards Products
67 Surface Acoustic Waves: concepts, materials and applications
71 Materials for biomedical applications
75 Ultra-high-strength tool steels prepared by selective laser melting and casting – a comparative study

Appendix
79 Publications
108 Patents
110 Graduation of young researchers
112 Calls and awards
113 Scientific conferences and colloquia
114 Guests and scholarships
117 Guest stays of IFW members at other institutes
119 Board of Trustees, Scientific Advisory Board
Review of 2017

This Annual Report addresses our cooperation partners worldwide, friends and all those who are interested in the Institute’s progress. It presents a cross section of our scientific activities in the past year, highlighting exemplary some results in the main part and giving a systematic overview of the institute’s output on the back pages. The very first pages of the Annual Report are used for a short flashback to the institutes development in 2017 beyond scientific results.

The year 2017 began with the celebration of a jubilee at the Leibniz Institute for Solid State and Materials Research Dresden: It have been 25 years since the IFW Dresden has been founded on January 1, 1992. We took this opportunity to thank all our partners and friends for their support and cooperation during an official ceremony on February 6, 2017 in the Congress Center Leipzig where we celebrated the event together with the other Saxon Leibniz Institutes. Together we looked back to a very successful development and presented our recent achievement to our prominent guests, among them the Saxon Minister for Science and the Fine Art Eva-Maria Stange and the president of the Leibniz Association Matthias Kleiner. On the IFW exhibition stand, our four ERC grantees presented their projects which reflected nicely the scope of IFW research. Later on, on February 27, 2017, we had the IFW’s annual reception, where we celebrated a birthday party with all the members IFW staff.

In terms of scientific work, 2017 was again a very productive and successful year for IFW. As in previous years, our scientific output has been on a high level, both qualitatively and quantitatively, which has been also confirmed by the annual evaluation of the IFW’s Scientific Advisory Board. The range of materials that we investigate is broad but well-defined. It contains Quantum Materials, a highly topical class of materials in condensed matter physics, as well as Functional Materials, representing an important part of modern materials engineering. In addition, in the last years, Nanoscale Materials became a strong focus of present-day materials science and a crucial material class for cutting-edge developments in electrical engineering. These three classes, Quantum Materials,
Functional Materials and Nanoscale Materials, provide the three materials-oriented pillars of our scientific work. While being distinctly multidisciplinary, there is a clear common thread to all our activities: all researchers at the IFW Dresden investigate yet unexplored properties of novel materials with the aim to establish new functionalities and applications.

The IFW’s Research Program has been adjusted during the program meeting with all responsible scientists of IFW in April 2017. The structuring into the four research areas

- Research Area 1: Functional quantum materials
- Research Area 2: Function through size
- Research Area 3: Quantum effects at the nanoscale
- Research Area 4: Towards products

has been proven to be suitable, providing continuity on the level of research areas and flexibility on the level of research topics.

In September 2017 the German Research Foundation announced the successful draft proposals which are invited to submit a full cluster application in the German wide Excellence Strategy. We are very proud that the Technische Universität Dresden has been successful with six cluster proposals and enters the next round for the Clusters of Excellence. We are especially happy that the IFW participates in three of these proposals for Clusters of Excellence, namely:

- cfad: Center for Advancing Electronics Dresden
- DCM: Dresden Center for Materiomics
- t.qmat: Complexity and Topology in Quantum Matter

Together with our colleagues at the TU Dresden and the other Dresden research institutes we are currently working very hard to prepare the full proposals. In the case of approval these new clusters will have strong impact on the IFW’s strategy as the respective fields will be essentially strengthened.

Annual Reception on February 27, 2017. We celebrated the 25th birthday of the IFW Dresden. Dr. Daniil Karnaushenko (right on the middle picture) received the IFW Junior Research Award. (middle and right photo: Matthias Rietschel)
2017 was again a yielding year with respect to prizes and honours awarded to members of the IFW. The most prestigious of the prizes won by IFW members is the Gottfried-Wilhelm-Leibniz-Prize 2018 of the German Research Foundation, which will be awarded to Prof. Dr. Oliver G. Schmidt in spring 2018. Furthermore, two outstanding PhD thesis of IFW junior scientist have been acknowledged with prizes: The Wilhelm-Ostwald-Society awarded its Young Investigator Prize 2017 to Daniil Karnaushenko, and Julia Körner achieved the Measurement Technology Award of council of university teachers of metrology.

The training of students and young scientists remains a very important concern of our work. PhD and diploma students are involved in nearly all scientific projects and in the resulting publications. Altogether, 26 PhD theses have been successfully completed in 2017, three of them with the best grade possible – summa cum laude. Traditionally, the IFW acknowledges these outstanding achievements of young scientists by awarding the Tschirnhaus-Medal.

As a Leibniz Institute, the IFW is financed by the federal government and the German federal states in equal parts. However, a considerable extension of capability is the amount of third-party project funding which is also an important index of quality. The level of third-party funding in 2017 amounts to 8.5 Mio. Euro. Most of this project funding was acquired in a highly competitive mode from the DFG and the European Commission. In particular, the high number of four running ERC groups and the substantial participation in two Collaborative Research Centres (SFB’s) prove the competitiveness of IFW. Among the large number of other third-party funded projects are two DFG Priority Programs that are coordinated by scientists form the IFW, as well as six DFG Priority Programs and two DFG Research Groups where scientists from the IFW participate.
Essentially publicly funded, it is our mission to make our research results public. In 2017, IFW scientists have published about 450 articles in scientific journals and conference proceedings. 169 invited talks were presented by IFW scientists at conferences, workshops, seminars and other occasions around the world. In 2017, we were granted 18 patents, and applications for 12 more patents have been made. Apart from these scientific communications the IFW continued its large efforts to make scientific work accessible for the general public and to inspire young people to study science or engineering. The most prominent event in this respect is the Dresden Long Night of Sciences which takes place once a year before the summer vacations. In 2017, again, the IFW offered an ample program which attracted about 3500 visitors. The highlight was an experimental show on low temperature physics presented by two IFW scientists in the roles of Heike Kamerlingh Onnes and Carl von Linde. A closer look to our research was offered to about 100 participants of the “Junior Doctor” action and the German wide Girls’ Day. Besides these big events we organize almost weekly lab-tours for various visitor groups, from school classes through official representatives to guests from foreign organization.

So we are looking back to a successful year 2017 in the Institute’s development. We are quite aware that this is due to the sustainable network of colleagues and partners in universities, research institutes and industry, both, on the regional and the international scale. We thank all of them for their constructive cooperation and are looking forward to taking up future challenges together. Special tribute is paid to the members of the Scientific Advisory Board and of the Board of Trustees as well as the funding organizations that continuously support and foster the positive development of the IFW.
Facts & Figures

Organization

The Leibniz Institute for Solid State and Material Research Dresden (IFW) is one of currently 93 institutes of the Leibniz Association in Germany. It is a legally independent association, headed by the Scientific Director, Prof. Dr. Burkard Hillebrands, and the Administrative Director, Dr. Doreen Kirmse.

The scientific body of the IFW Dresden is structured into five institutes, the directors of which are simultaneously full professors at Dresden, respectively Chemnitz Universities of Technology:
- IFW Institute for Solid State Research, Prof. Dr. Bernd Büchner
- IFW Institute for Metallic Materials, Prof. Dr. Kornelius Nielsch
- IFW Institute for Complex Materials, Dr. Thomas Gemming (temporarily)
- IFW Institute for Integrative Nanosciences, Prof. Dr. Oliver G. Schmidt
- IFW Institute for Theoretical Solid State Physics, Prof. Dr. Jeroen van den Brink

Further divisions are the Research Technology Division and the Administrative Division.

Financing

The institutional funding of IFW is supplied by the Federal government and by the German states (Länder). In 2017, this funding was EUR 32,245,000 in total. In addition, the IFW receives project funding from external sources of about 8.5 million Euro. Thereof, about 3.4 million Euro came from German Research Foundation (DFG), 2.4 million Euro from European Union programs, 1.1 million Euro from Federal Government projects, 0.6 million Euro from industry and 1.0 million Euro from other donors including the Free State of Saxony.
Personnel

On 31 December 2017, 479 staff members were employed at the IFW, including 88 doctorate students as well as 16 apprentices in seven different vocational trainings and two business students of a vocational academy. Additionally 53 fellowship holders worked at IFW, among them 20 doctorate students.

Gender equality, as well as work life balance, are defined goals of the IFW Dresden. In 2017, the percentage of women in scientific positions was 22.4% and the percentage of women in scientific leading positions was 19.4%. The IFW is regularly audited for the certificate “audit berufundfamilie” – a strategic management tool for a better compatibility of family and career.

Number of publications and patents

In terms of publications, the qualitative and quantitative level remains high at the IFW. In 2017, IFW scientists have published 444 refereed journal articles, a considerable number of them in high impact journals. Furthermore, IFW members held 169 invited talks at conferences and colloquia.

By 31 December 2017, the IFW holds 117 patents in Germany and 94 international patents.

Encouragement and training of young people at IFW Dresden: from hands-on experiments during the Long Night of Sciences up to vocational training.

(left photo: Steffen Haas, middle and right photo: IFW Dresden)
Research Area 1

Evidence for a magnetic field induced nematic liquid in the spin chain LiCuSbO₄

Abstract: We report combined experimental and theoretical evidence of a magnetic field-induced nematic liquid arising above a field of ∼13 T in the edge-sharing chain cuprate LiCuSbO₄ [1]. Our interpretation is based on the observation of a field induced spin-gap in the measurements of the ⁷Li NMR spin relaxation rate T⁻¹ as well as contrasting field-dependent power-law behavior of T⁻¹ vs. T, and is further supported by static magnetization and ESR data. An underlying theoretical microscopic approach favoring a nematic scenario is based essentially on the nearest neighbor xyxz exchange anisotropy within a model for frustrated spin-1/2 chains and is investigated by the DMRG technique. The employed exchange parameters are justified qualitatively by electronic structure calculations for LiCuSbO₄.

Low dimensional spin systems

Electronic correlations in solids give rise to novel ground states of matter such as spin liquid states in low dimensional quantum magnets [2,3]. Here, long-range magnetic order is suppressed down to T = 0 due to quantum fluctuations [4]. Though individual spins remain non-ordered in the spin liquid, higher rank magnetic multipoles can order under favorable conditions [5]. Such a multipolar order does not break time-reversal symmetry and is often referred to as a “hidden order” since it is difficult to detect it. However, the spin rotational symmetry is broken in this hidden phase which is therefore also called a spin-nematic state, in analogy with the nematic order in liquid crystals, where the translational order is absent but rotational symmetry is broken. The ground state of a Heisenberg spin-1/2 chain with nearest neighbor antiferromagnetic (AFM) interaction J₁ is described by the gapless Tomonaga-Luttinger spin liquid [5]. Including next-nearest neighbor interaction J₂ can cause spin frustration and may yield different phases depending on the frustration ratio α = |J₂/J₁|, irrespective of the sign of J₁ [6-8]. Theoretical works [8-11] on such frustrated J₁(FM) - J₂(AFM) chain models have predicted field-induced multipolar states near the saturation field H_sat above which all spins are aligned by an external magnetic field H at T = 0. These states form a spin liquid of multiple p-bound states of magnons corresponding to nematic, triatic, quartic multipolar phases (p = 2, 3, 4, ...). In contrast, at lower fields H-dependent incommensurate spin density wave phases (SDW_p) can appear in such systems [12]. Recently, the synthesis of LiCuSbO₄, a novel, strongly frustrated J₁(FM) - J₂(AFM) spin chain compound (Fig. 1) has been reported [13]. It exhibits short-range incommensurate spin correlations below T = 9K but does not show long-range magnetic order at H = 0 down to T = 0.1K. A sizeable exchange anisotropy was estimated, and magnetization approaches saturation near 16 T only [13], making LiCuSbO₄ an ideal candidate to search for field induced SDW_p or multipolar orders.

Fig. 1: Crystal structure of LiCuSbO₄. The lower panel shows a spin chain running along the a direction with the main interactions J₁, J₁', and J₂ between the Cu spins (small arrows). The big arrows indicate the DM vector, see text.
Results in LiCuSbO₄ and Discussion

In magnetic materials, the nuclear spin lattice relaxation rate, T_1^{-1}, is caused by the transverse (i.e. \perp to the nuclear spin quantization axis) components of the fluctuating field exerted on the nuclei by the electron spin system. In addition, in certain cases such as the dipolar hyperfine coupling of the 7Li nucleus to the Cu electronic spins in LiCuSbO₄, also longitudinal fluctuations (i.e. \parallel to the nuclear spin quantization axis) can contribute to T_1^{-1}. This is a fortunate circumstance in LiCuSbO₄ since the parallel fluctuations are those which can evidence nematic spin fluctuations when the transverse fluctuations are gapped.

In weakly coupled AFM Heisenberg chains above the Néel ordering temperature T_N, T_1^{-1} increases with decreasing T and/or increasing magnetic field H and tends to diverge by approaching T_N. This is mainly due to the growth of transverse spin fluctuations whereas parallel spin fluctuations decay smoothly [14,15]. In LiCuSbO₄, however, T_1^{-1} shows a contrasting behavior with respect to temperature and magnetic field (see Fig. 2 b,c,d,e). At relatively small fields (3-12 T) the low-temperature region is determined by a sharp increase of $T_1^{-1}(T)$ (Fig. 2 b,c), pointing to the vicinity of a magnetically ordered state at a lower T. Especially at $H = 9$ T the increase is substantially more pronounced than at lower fields such as for 3 T indicating an increase of the ordering temperature of this magnetic phase. Such a behavior is not expected for an ordinary AFM Néel state where T_N is usually suppressed by an external magnetic field. In fact, the field region around 9 T is also identified by the low-temperature anomaly in the magnetic specific heat [13]. It is conjectured to be a signature of an unusual field-induced SDW$_p$ phase in LiCuSbO₄. Above a critical field $H_{c1} = 13$ T, T_1^{-1} changes from the upturn

![Saturation of magnetization](image1.png)

![Temperature dependence of the 7Li nuclear spin lattice relaxation rate](image2.png)

![The T_1^{-1} dependence at $T < 20$ K for 3 T, 9 T and 12 T](image3.png)

![T_1^{-1} vs. inverse temperature $1/T$](image4.png)

Fig. 2: (a) Field dependence of the magnetization at $T = 0.45$ K. (b) Temperature dependence of the 7Li nuclear spin lattice relaxation rate at different magnetic fields. (c) The $T_1^{-1}(T)$ dependence at $T < 20$ K for 3 T, 9 T and 12 T. (d,e) T_1^{-1} vs. inverse temperature $1/T$ at $T < 20$ K for fields > 13 T. Solid lines in (c–e) are model curves (see text).
behavior to a suppression at low T, suggesting the opening of a gap Δ in the spin excitations. We can extract Δ and a power-law exponent β from a fit of the experimental data to $T^{-1}(T) = C_1(T) \exp(-\Delta / T) + C_2(T)(T - T_c)^\beta$, which takes into account theoretical predictions [14,15]. This equation implies the contrasting gapped and critical power-law contributions to T^{-1} with $\Delta > 0$ and $\beta < 1$. By crossing $H_{c1} = 13$ T the growth of T^{-1} turns into a decay corresponding to the sign change of the exponent β. Concomitantly, the weight C_2 of the gapped term increases on expense of the decreasing weight C_1 of the power-law term. At the same time Δ increases non-linearly, and a finite power law contribution with positive β, in contrast to $\beta < 0$ for $H < H_{c1}$, is required to achieve the best fit of T^{-1}. All of these characteristics are consistent with a field induced SDW with $p=2$ around an intermediate field of -9 T, and a spin-nematic state above H_{c1}. In the gapped regime the longitudinal correlations are decaying with lowering T which corresponds to the sign change of the power-law exponent β [14,15]. The gapped excitation spectrum is a distinct feature of the spin-nematic state of the weakly coupled 1D-chains with only a weak soft mode in the longitudinal channel [12]. Furthermore, with the help of ESR measurements and theoretical considerations, by the field dependence of the gap, and by the fact that the magnetization does not saturate above 13 T (Fig. 2a), we could exclude that the gap in T^{-1} arises from full polarization of the spins or from staggered antisymmetric Dzyaloshinskii-Moriya interactions. Instead, the gap is indeed a signature of a spin-nematic state, where the transverse spin fluctuations are expected to be gapped, and the longitudinal correlations follow the power law $-T^\beta$.

Beyond the experimental work, we have performed extensive theoretical calculations. Relativistic density functional (DFT and DFT+U) electronic structure calculations have been performed with the aim to understand (i) the amount of interchain couplings and (ii) the magnitude of the intra-chain couplings. With respect to (i) we have analyzed the dispersion of bands and found pronounced 1D van Hove singularities near the Fermi level. Thus, we have confirmed the nearly 1D behavior of LiCuSbO$_4$. Regarding (ii), we arrive at a sizable splitting of the two NN exchange integrals: $J_1 = -160 K$ and $J_2' = -90 K$ (Fig. 1), whereas $J_2 = 37.6 K$, only. Thus, we are left with a dominant FM total NN coupling and an unrenormalized mean frustration parameter $\alpha = J_1 / [(J_1 + J_2')/2] = 0.3$, close to the quantum critical $\alpha_c = 0.25$.

Density matrix renormalization group calculations (DMRG) were done to analyse a novel anisotropy mechanism based on the low-symmetric NN exchange anisotropy, which in addition to the J_1-J_2 frustration, stabilizes a nematic phase in a moderate high-field region. In addition, a weak homogeneous and staggered NN DM coupling was found not to destroy the nematicity. We introduced a 1D frustrated Heisenberg model with a xyz exchange anisotropy and a magnetic field H along the z axis, and calculated the magnetization curve using DMRG. By fitting the experimental curve in Fig. 2a, we have found a possible parameter set of the J_z, J_z, and J_2 couplings, and a nematic state is established by the xyz exchange anisotropy in the calculations. To check this possibility, we have calculated the nematic correlation function as an indicator of magnon pairing. Our single chain Hamiltonian with the involved specific exchange anisotropy describes a 1D system with a distinctive nematically ordered ground state at $T=0$ and at high enough magnetic fields in contrast with simple AFM Heisenberg chains. With increasing finite T this distinct order is more and more suppressed. The field range with the enhanced nematic correlations agrees well with that region where the spin gap has been experimentally observed, namely, in between $H = 13 - 16$ T. A similar nematicity scenario has been proposed in our recent work devoted to linarite [16], but there yet not fully confirmed experimentally. Furthermore, we have also studied the effect of additional uniform or staggered DM couplings allowed by the crystallographic symmetry as mentioned above. As a result we found that the nematic state is hardly affected by a weak DM coupling. The effect of a staggered DM interaction is even weaker than that of a uniform one.
Conclusion

We have identified experimentally and theoretically a field induced SDW₂ phase, which is followed by a spin-nematic state above a critical field \(H_c \). These phases and the parameter window measured by NMR are visualized in the schematic phase diagram of LiCuSbO₄ in Fig. 3. Certainly, there must be also a second “upper” critical field \(H_{c2} \) framing the stability region of the strong nematic state in LiCuSbO₄. This calls for further experimental studies of LiCuSbO₄ at higher fields and also at lower temperatures.

Funding: Deutsche Forschungsgemeinschaft, grants SFB 1143, KA 1694/8-1, GR 3330/4-1, Emmy Noether Programme projects WU595/3-1, and WU595/3-2, project RFB 14-02-01194. ICC-IMR.

Cooperation: 2Zavoisky Physical-Technical Institute of the Russian Academy of Sciences, 420029, Kazan, Russia; 3Institute of Materials Research, Tohoku University, 980-8577, Sendai, Japan; 4Max-Planck-Institute for Chemical Physics of Solids, Dresden, Germany; 5Universität Magdeburg, Institut für Theoretische Physik, Magdeburg, Germany
Correlation induced electron-hole asymmetry in quasi-2D iridates

E. M. Pärschke, K. Wohlfeld1, K. Foyevtsova2, J. van den Brink

Abstract: The iridate Sr$_2$IrO$_4$ closely resembles the cuprate La$_2$CuO$_4$ from a magnetic and crystallographic point of view. When doped with charge carriers, the insulating, antiferromagnetic cuprate La$_2$CuO$_4$ becomes a superconductor with a relatively high transition temperature. This raises the question how far Sr$_2$IrO$_4$ is away from superconductivity upon doping. The first step towards understanding this issue is provided by a study of the motion of a single charge carrier that is introduced to the compound.

Our theoretical study shows that an electron added to Sr$_2$IrO$_4$ forms a spin-polaron, similar to the cuprates. But the situation of a removed electron - an added hole - is far more intricate. In this case complex many-body configurations of singlet and triplet character form. This effect is due to the presence of strong spin-orbit coupling in iridium ions in combination with electronic correlation effects. As a consequence the calculated photoemission spectrum of Sr$_2$IrO$_4$ (left panel) is very different from its inverse photoemission spectrum (right panel). We conclude that, unlike in the case of the cuprates, the electronic structure of electron and hole doped iridates are fundamentally different.

Motivated by similarities between Sr$_2$IrO$_4$ and La$_2$CuO$_4$, we ask the question whether the quasi-2D iridates can also become superconducting upon charge doping. On the experimental side, very recently signatures of Fermi arcs and the pseudogap physics were found in the electron- and hole-doped iridates [4, 3] on top of the d-wave gap in the electron-doped iridate. On the theoretical side, one needs to study a doped multiorbital two-dimensional Hubbard model supplemented by the non-negligible spin-orbit coupling, which is a very difficult task. Fortunately, there exists one nontrivial limit of the two-dimensional doped Hubbard-like problems, whose solution can be obtained in a relatively exact manner. It is the so-called single-hole problem which relates to the motion of a single charge (hole or doublon) added to the AF and insulating ground state of the undoped two-dimensional Hubbard–like model [5]. In the case of the cuprates, this problem has been intensively studied both on the theoretical as well as the experimental side and its solution (the formation of the spin polaron, i.e. strong coupling of the propagating hole to the magnons) is considered a first step in understanding the motion of doped charge [5]. Here we calculate the spectral function of the correlated strong coupling model describing the motion of a single charge doped into the AF and insulating ground state of the quasi-2D iridate. The main result is that we find a fundamental difference between the motion of a single electron or hole added to the undoped iridate.

In particular, introducing a single electron into the quasi-2D iridates, as experimentally realised in an inverse photoemission (IPES) experiment, leads to the creation of a single $5d^6$ doublon in the bulk, leaving the nominal $5d^5$ configuration on all other iridium sites. Since the t_{2g} shell is for the $5d^6$ configuration completely filled, the only eigenstate of the appropriate ionic Hamiltonian is the one carrying $J = 0$ total angular momentum. Therefore, just as in the cuprates, the $5d^6$ doublon formed in IPES has no internal degrees of freedom, i.e. $(d) = |J = 0\rangle$, see Fig. 1.

On the contrary, the hopping of a hole to the nearest neighbor site does not necessarily lead to the coupling to the magnetic excitations from $j = 1/2$ AF. In [12] we derive the microscopic model for a single hole introduced into the iridate forming $5d^4$ configuration, which resembles the case encountered in the photoemission (PES) experiment. Omitting the details, we point out that due to the strong Hund’s coupling the lowest eigenstate of the appropriate ionic Hamiltonian for four t_{2g} electrons has the
Research Area 1 FUNCTIONAL QUANTUM MATERIALS

- The total (effective) orbital momentum \(L = 1 \) and the total spin momentum \(S = 1 \).
- In the strong spin-orbit coupled regime, the eigenstates of such an ionic Hamiltonian are the lowest lying \(J = 0 \) singlet, and the higher lying \(J = 1 \) triplets and \(J = 2 \) quintets.
- Unlike in the cuprates, the 5\(d^4\) hole formed in PES is effectively left with four internal degrees of freedom, i.e., \(S, T_1, T_0, T_{-1} \), see Fig. 1.

Once the hybridization between the iridium ions is turned on, the hopping of the 5\(d^4\) hole between iridium sites may or may not couple to magnons. However, there is one crucial difference w.r.t. IPES: the 5\(d^4\) hole can carry finite angular momentum and thus the 5\(d^4\) doublon may move between the nearest neighbor sites without coupling to magnons.

Using SCBA [5] we calculate the relevant Green functions for the single electron (5\(d^6\) doublon) and the single hole (5\(d^4\) hole) doped into the AF ground state of the quasi-2D iridate.

We first discuss the calculated angle-resolved IPES spectral function shown in Fig. 2(b). One can see that the first addition state has a quasiparticle character, though its dispersion is relatively small: there is a rather shallow minimum at (\(\pi/2, \pi/2\)) and a maximum at the \(\Gamma\) point. Moreover, a large part of the spectral weight is transferred from the quasiparticle to the higher lying ladder spectrum, due to the rather small ratio of the spin exchange constants and the electronic hopping [5]. Altogether, these are all well-known signatures of the spin-polaron physics: the mobile defect in an AF is
strongly coupled to magnons (leading to the ladder spectrum) and can move coherently as a quasiparticle only on the scale of the spin exchange J_1 [5]. Thus, it is not striking that the calculated IPES spectrum of the iridates is similar to the PES spectrum of the $t-J$ model with a negative next nearest neighbor hopping – the model case of the hole-doped cuprates. This agrees with a more general conjecture, previously reported in the literature: the correspondence between the physics of the hole-doped cuprates and the electron-doped iridates [14].

Due to the internal spin and orbital angular momentum degrees of freedom of the 5d^4 states, the angle-resolved PES spectrum of the iridates (Fig. 2a) is very different. In good agreement with experiment [1, 9, 7], the first removal state shows a quasiparticle character with a relatively small dispersion and a minimum is at the (π, 0) point (so that we obtain an indirect gap for the quasi-2D iridates). Also the plateau around ($\pi/2$, $\pi/2$) and the shallow minimum of the dispersion at the Γ point are reproduced, where the latter is related to a strong back-bending of higher energy $J=1$ triplets [12]. On a qualitative level this quasiparticle dispersion resembles the situation found in the PES spectrum of the $t-J$ model with a positive next nearest neighbor hopping, which should model the electron-doped cuprates (or IPES on the undoped). However, the higher energy part of the PES spectrum of the iridates is quite distinct not only w.r.t. the IPES but also the PES spectrum of the $t-J$ model with the positive next nearest neighbor hopping. Thus, the spin-polaron physics, as we know it from the cuprate studies [5], is modified in this case and we find only very partial agreement with the paradigm stating that the electron-doped cuprates and the hole-doped iridates show similar physics [14].

This difference follows from the interplay between the free and polaronic hoppings of the introduced hole which is typically highly nontrivial. The free hopping of the 5d^4 hole is possible here for both the $J = 0$ singlet and $J = 1$ triplets which leads to the onset of several bands. Moreover, the $J = 1$ triplets can freely hop not only to the next nearest neighbors but also to the nearest neighbors. For the polaronic hopping, the appearance of several polaronic channels, originating in the free J-bands being dressed by the $j=1/2$ magnons, contributes to the strong quantitative differences w.r.t. the 5d^6 doublon case or the cuprates.

Fig. 2: Theoretical spectral functions of iridates (a) Photoemission (PES) and (b) inverse photoemission (IPES) spectral function of the low-energy (polaronic) models developed for the quasi-2D iridates and solved using the self-consistent Born approximation.
In conclusion, the differences between the motion of the added hole and electron in the quasi-2D iridates have crucial consequences for our understanding of these compounds. The PES spectrum of the undoped quasi-2D iridates should be interpreted as showing the $J = 0$ and $J = 1$ bands dressed by $j = 1/2$ magnons and a free nearest and further neighbor dispersion. The IPES spectrum consists solely of a $J = 0$ band dressed by $j = 1/2$ magnons and a free next nearest and third neighbor dispersion. Thus, whereas the IPES spectrum of the quasi-2D iridates qualitatively resemble the PES spectrum of the cuprates, this is not the case of the iridate PES. This result suggests that, unlike in the case of the cuprates, the differences between the electron and hole doped quasi-2D iridates cannot be modelled by a mere change of sign in the next nearest hopping in the respective Hubbard or $t-J$ model. Any realistic model of the hole doped iridates should instead include the onset of $J = 0$ and $J = 1$ quasiparticle states upon hole doping.

Funding: Narodowe Centrum Nauki (NCN, National Science Center) under Project No. 2012/04/A/ST3/00331 and Project No. 2016/22/E/ST3/00560; Deutsche Forschungsgemeinschaft via SFB 1143

Cooperation: ¹Institute of Theoretical Physics, University of Warsaw; ²University of British Columbia, Vancouver
Large, three-dimensional and faceted LaFeAsO crystals

Abstract: Even after nine years of intense research on iron-based superconductors, large and well faceted single crystals with considerable c-axis growth of the 1111 family are still a challenge to be grown. The lack of crystals is hindering their investigation as posing limits to methods yielding results in k-space (e.g., ARPES, STM, ...) and any c-axis dependent measurements. In 2017, we were able to apply a sophisticated route based on the not-so-well-known method of solid state single crystal growth (SSCG) to yield large LaFeAsO single crystals with a considerable crystal growth along the c-axis [1].

State-of-the-art

Soon after the discovery of iron-based superconductors single crystals were successfully grown in the 11, 122 and 111 families [2-4], the method of choice being self-flux growth. In the 1111 family, single crystals are hard to be obtained via flux growth [5,6], although crystals could be successfully synthesized using high pressure high temperature synthesis [7]. However, this method yields rather small crystals and also does not lead to a reasonable growth along the c direction either. This hurdle has, so far, limited the detailed investigation of the 1111 family of pnictide superconductors rendering them the least studied family among all iron-based superconductors. In this work, we have the SSCG growth method to yield large LaFeAsO single crystals with a considerable crystal growth along the c axis.

Solid state single crystal growth (SSCG)

Solid state single crystal growth (SSCG) is a rather uncommon crystal growth technique. SSCG has been used to synthesize ceramic materials such as BaTiO$_3$ [8] as well as metallic materials [9]. This method utilizes the phenomenon of abnormal grain growth (AGG) to grow single crystals from a polycrystalline matrix. While many systems exhibit AGG, its origin and mechanism is not fully explained so far [10]. Facetted growth and the presence of a secondary phase have been empirically reported to aid SSCG as well as deliberately chosen additives [11]. Several mechanisms have been discussed, for example grain boundary roughening [12] or the aid of a liquid phase [13].

In our solid state crystal growth experiments, we used polycrystalline pellets and Na-As powder. Both materials were eventually prepared before the growth and layered into an alumina crucible. The molar ratio of LaFeAsO to Na-As used was 1:4, which corresponds to a ratio in volume of about 1:1. The alumina crucible was welded into an Nb crucible using approximately 1 bar of argon pressure. For protection from air, the Nb crucible was enclosed in quartz glass. Subsequently, the material was heated to 1080°C and annealed for 200 h. After the reaction, the pellets were removed from the crucible and placed into a 1:1 mixture of ethanol and distilled water to remove the water-soluble Na-As. For removing remaining flux on the crystal surface, the crystals were placed in an ultrasonic bath using acetone as a solvent. Single crystals sized up to 2 x 3 x 0.4 mm3 were obtained. Representative crystals with pronounced facets are shown in Fig. 1. Crystal growth occurred mainly on the outer surface of the pellets, whereas the crystal size is considerably smaller in the inside of the pellets.

Solid state single crystal growth occurs when the growth of grains with a specific orientation is preferred, therefore producing abnormally fast growing grains which consume the neighbouring grains, leading to a bimodal size distribution [12]. A scheme of the
process is shown in Fig. 2. In the present case, a liquid phase is introduced to facilitate SSCG in the form of Na-As. Na-As is actually a phase mix consisting of several phases. The mixture is melting at 550°C as seen in our DTA measurement (not shown) and starts penetrating the pores of the polycrystalline LaFeAsO matrix. At the maximum synthesis temperature of 1080°C the mobility of the atoms in the polycrystal is high enough to start the SSCG process. The fact that Na-As diffuses into the pores of the polycrystals is evident by looking at the LaFeAsO pellets after the crystal growth - the pellets retain their shape, but on contact with water Na-As starts dissolving, thereby releasing the insoluble grown crystals from the pellet.

We explored several parameters to verify the SSCG scenario and to optimize growth conditions:

Time: The time spent at the maximum temperature is directly correlated to the sample size and the growth along c-axis. A first experiment where the sample was held at 1080°C for only 48 h yielded crystals with a thickness of only about 50 μm without well-formed facets. This observation demonstrates that the growth is not a growth from a solution, where the crystals grow upon cooling and, hence, upon exceeding the solubility product, but in solid matter, where the diffusion process scales with time.

Liquid phase: FeAs and LaAs were also tested as liquid phases to avoid incorporation of foreign atoms, but FeAs did not diffuse into the polycrystalline matrix and the melting point of LaAs is considerably higher than 1080°C.

Temperature: Unfortunately, high synthesis temperatures where LaAs could be used as the liquid phase are limited by another effect - high temperatures lead to interface roughening, thereby preventing the formation of faceted grains which are known to be crucial for abnormal grain growth [14]. An experiment with Na-As as a liquid phase with 1110°C as the maximum temperature yielded considerably smaller crystals.

Mixing: Ground polycrystalline LaFeAsO powder which is thoroughly mixed with Na-As leads to strongly decreased crystal size, as expected if growth is via SSCG method.

Powder and single crystal X-ray diffraction were performed on the crystals to confirm the tetragonal crystal structure P4/nmm (No. 129) of LaFeAsO at room temperature. Laue diffraction was performed to check for single crystallinity (to exclude twinning and intergrowth of crystals) and to identify the facets. Fig. 3 shows a schematic drawing of the crystal morphology and measured Laue diffraction patterns for the {001} and {101} facets.

Properties of LaOFeAs crystals

The magnetic susceptibility data of LaFeAsO obtained at an external fields of μ0H = 1 T is shown in Fig. 4. Both the magnetic and the structural transition can be assigned to anomalies shown in Fig. 4. The left inset shows the derivative of the curve, highlighting the two transitions which can be determined to be at \(T_N = 127 \) K (emergence of the spin-density wave) and \(T_s = 145 \) K (structural transition from P4/nmm to Cmmm). The clearly visible splitting of the two transitions in the susceptibility measurements has not been clearly observed before in polycrystalline samples. Above the phase transitions the susceptibility increases linearly, a behavior which has often been observed in the iron-pnictides [14] and which so far is unexplained as it cannot be described with models referring to purely localised or purely itinerant charge carriers.
Outlook

We will continue to extend the materials basis in the 1111 family to other members. Our large, three-dimensional and faceted crystals set the stage for investigations that were until now limited due to the lack of suitable crystals. We will use the crystals to further explore nematic fluctuations and polarons aiming towards a deeper understanding of the physics of Fe-based superconductors.

Funding: DFG Priority Programme SPP1458: BU887/15-1, STU 695/1-1; DFG Research Training Group 1621; DFG Emmy Noether Programme WU595/3-3
Nanotubular spin-waves conduits
J. A. Otálora, A. Kákay, J. Lindner, H. Schultheiss, K. Geishendorf, A. Thomas, K. Nielsch

Abstract: Substantial efforts for understanding and controlling mechanisms governing the spin-wave’s (SW) behavior in a wide variety of ferromagnetic architectures are taking place. This is because of its potential for boosting spintronics devices towards applications with unprecedented technological advantages. In this context, a novel layout is proposed and it would significantly foster the endeavor: magnetic nanotubes. Its outstanding non-reciprocal SWs properties might be the key for their success. These features are maximum at the ground state and are present not only in the SWs dispersion, but also manifest via non-reciprocal SWs absorption. This leads to a difference in the decay length of counter-propagating magnons along the tube length and the azimuthal direction. Its magnons are plane-waves and its non-reciprocities can be controlled with an application of weak DC magnetic fields around the tube’s large axis. Our findings suggest the magnetic nanotubes as a novel layout for efficient, flexible and reconfigurable magnonic applications.

Curvature-induced non-reciprocal effects
New routes to modify the characteristics of materials with ferromagnetic order are to bend thin film membranes. Bending the membrane can lead to internal strains and to a breaks local inversion symmetry, resulting, for example, in an unambiguous distinction between the outer and inner surfaces in case of curved geometries such as nanotubes. The internal energies are also affected, especially when the curvature radius reaches intrinsic length scales. In strongly curved systems, off-diagonal elements of the exchange interaction are not negligible, leading to chiral ordering. Moreover, the fields are also influenced by the break of the inversion symmetry. Due to the modified energies, the magnetic ordering and the magnetization dynamics differ from those known for thin-films. Therefore the curvature can be seen as an extra degree of freedom for controlling the characteristics of ferromagnetic materials.

In Magnonics, spin waves (SWs) or magnons are proposed to transport and process information analog to, for instance, the charge currents in electronics. Engineering magnon properties to control the SW excitation and propagation is therefore a crucial task and, under this goal, the membrane curvature can be used to extend the toolbox of operations for controlling SWs, which is required in applications such as communication and logic devices. Geometries like Möbius rings, helices, grooves stripes, and nanotubes can be accounted as few sets of layouts wherein the system curvature has an impact on the SW dynamics. Such topologies are being investigated in our group, with magnetic nanotubes as our main focus.

Our theoretical predictions suggest magnetic nanotubes as layouts with outstanding SWs properties, which might boost spintronics devices towards applications with unprecedented lower power consumption, reconfigurable functionality, faster operative rates and further miniaturization. The tunable non-reciprocal SW features induced by the nanotubular curvature is the key. The SWs dispersion relation and absorption is asymmetric regarding the sign of the propagation vector. This means that counter-propagating magnons have different wave vectors and different extinction lengths for a given frequency. This can be exploited, for instance, to avoid the formation of standing spin wave resonances. Therefore, it provides conditions for uni-directional propagation of SWs packages that is fundamental to enhance the efficiency of SWs-based logic devices. Figure 1(a) sketches a Permalloy (Ni-Fe) nanotube in a circular magnetic state wherein the SWs are excited by an rf-field applied at the center of the tube.
Quasi-monochromatic magnons of different orders \((n = 0, \pm 1, \pm 2)\) excited at 4.7 GHz are shown in Fig. 1(b, c). The radial component of the excited magnon modes is represented by the color code in Fig. 1(b). Note that the wavelength and transport length of counter-propagating magnons differ. Figure 1(c) shows the magnon field distribution along the nanotube perimeter. The case of non-reciprocal SW dispersion and intrinsic linewidth are presented in Fig. 2(a) and (b), respectively. Aspects like the optimization of the curvature-induced non-reciprocity as a function of the system size and magnetic ground state are currently under research in our group. It means to control the magnons mode profile and the tuning of non-reciprocity via weak DC external magnetic fields.

We believe that three dimensional curvilinear magnetic membranes, in particular nanotubes, can be exploited as a novel layouts for non-reciprocal conduits, for magnons transport along curved paths, and as one-dimensional magnonic crystals.

Synthesis and characterization of nanotubular magnonic devices

Based on the experimental techniques available in our facilities and in our partner’s laboratories for synthesis and magnetic characterization, our research is focused to one type of curved multilayered nanoconduits: core-shell magnetic nanotubes (CSMNs), which consist in elongated cylindrically-shaped shells disposed in a concentric configuration [11], as illustrated in Fig. 3.

Processes for synthesis are performed by the combination of atomic layer deposition (ALD) and electrodeposition techniques, leading to the availability of CSMNs with inner metal wire (Pd, Cu, Au) and outer Insulator Magnetic shell (γ-Fe3O4), with diameters ranging between 100 nm and 1 micron diameter, 1 micron and 20 microns length and 1 nm and 50 nm shell thickness.
Our laboratory accounts with multiple ALD set ups for conformal coating of different templates, which can either be arranged of freestanding metal nanowires or nanoporous anodic aluminum oxide (AAO). In the first case, the insulating magnetic shell is directly deposited on the cylindrical metal nanowires using ALD. In the latter, case the AAO is first coated with the insulating magnetic shell and then filled with a metal using electrodeposition. In a last step, this technique requires to etch away the AAO leading to an array of CSMNs.

Both approaches exploit the outstanding ability of ALD to coat high aspect ratio templates in a uniform manner. The synthesis of magnetic materials via ALD often requires special modifications of the standard deposition setups. Our laboratory can meet those requirements with a number of different reactors. For example, the growth of γ-Fe$_3$O$_4$ using ferrocene as precursor, requires ozone as oxidizer, which can be supplied with an external ozone generator. ALD thin films of FeO$_x$ have already been successfully deposited in our lab. The next steps are to optimize the film composition and the magnetic properties with suitable deposition parameters and heat treatments. This optimized process can then be used to synthesis CSMNs with γ-Fe$_3$O$_4$ as insulating magnetic shell.

Fig. 3: Illustration of a core-shell magnetic nanotube (Left) made of three concentric shells and its synthesis by combination of ALD and electrodeposition in alumina templates (Right) [11]
Generic Coexistence of Fermi Arcs and Dirac Cones on the Surface of Time-Reversal Invariant Weyl Semimetals

A. Lau, K. Koepernik, J. van den Brink, C. Ortix

Abstract: The hallmark of Weyl semimetals is the existence of open constant-energy contours on their surface—the so-called Fermi arcs—connecting Weyl points. In this work, we show that for time-reversal symmetric realizations of Weyl semimetals these Fermi arcs in many cases coexist with closed Fermi pockets originating from surface Dirac cones pinned to time-reversal invariant momenta. The existence of Fermi pockets is required for certain Fermi-arc connectivities due to additional restrictions imposed by the six \mathbb{Z}_2 topological invariants characterizing a generic time-reversal invariant Weyl semimetal. We show that a change of the Fermi-arc connectivity generally leads to a different topology of the surface Fermi surface, and identify the half-Heusler compound LaPtBi under in-plane compressive strain as a material that realizes this surface Lifshitz transition. We also discuss universal features of this coexistence in quasi-particle interference spectra.

Weyl Semimetals

Sparked by the discovery of the quantum Hall effect and its theoretical explanation, the study of topological phases of matter has been one of the driving forces in modern condensed matter physics [1,2]. In recent years, the family of topological materials has been extended by topological semimetals [3]. A milestone was the experimental discovery of Weyl semimetals (WSMs) [4-6]. WSMs are three-dimensional (3D) gapless materials whose bulk energy bands cross linearly at isolated points, the so-called Weyl nodes, in the Brillouin zone (BZ) [3].

A Weyl node represents a monopole of the Berry flux in momentum space. Consequently, an integral of the Berry flux over a closed surface enclosing the Weyl node results in a nonzero integer value, which defines the topological charge of the node. Since the total topological charge of the whole BZ must vanish, Weyl nodes always appear in pairs of opposite charge and can only be annihilated pairwise. For this reason, they are a robust bulk feature [3]: generic perturbations shift the nodes in energy and momentum space without annihilating them.

The nonzero topological charge of the Weyl nodes can also be interpreted as the change in the Chern number of the collection of gapped two-dimensional (2D) systems realized by decomposing the 3D BZ of a WSM in 2D momentum space cuts separating the Weyl points from each other (see Fig. 1a). This property is at the basis of the existence of one of the most interesting hallmarks of WSMs: the existence of open constant-energy contours in the surface BZ called Fermi arcs connecting the surface projections of Weyl nodes with opposite charge [3].
\(\mathbb{Z}_2 \) Invariants in TRI Weyl Semimetals

Time-reversal invariant (TRI) realizations of WSMs are special because they can be additionally characterized by six \(\mathbb{Z}_2 \) invariants associated with the TRI planes of the BZ [7]. The Chern number of the effective 2D insulators realized by the TRI planes will be zero, but the time-reversal polarizations still allow to characterize the effective 2D systems in terms of a \(\mathbb{Z}_2 \) topological invariant \(\nu \) [8].

For a generic surface of a WSM, by bulk-boundary correspondence the \(\nu_i \) determine whether an even (\(\nu_i = 0 \)) or odd (\(\nu_i = 1 \)) number of Kramers pairs of surface states cross the Fermi level along the surface projection of the \(i \)-th TRI plane. This imposes restrictions on the structure of the surface Fermi surface but still does not uniquely determine it. Figs. 1(c) and (d) sketch two allowed but qualitatively very different surface Fermi surfaces of a TRI WSM with corresponding \(\mathbb{Z}_2 \) invariants. A surface Fermi surface consisting of only two open arcs, connecting Weyl points as depicted in Fig. 1c, is entirely allowed. However, different pairs of Weyl points of opposite charge can be connected only if an additional Fermi pocket, enclosing a TRI point, is created (see Fig. 1d). The latter situation is a unique signature of Fermi arcs coexisting with a surface Dirac cone (see Fig. 1b), which is an exclusive feature of TRI WSMs [7]. This surface Dirac cone is protected for a given connectivity of the Fermi arcs. We emphasize that while this transition does not change the \(\mathbb{Z}_2 \) invariants of the TRI WSM, the change of the Fermi surface topology does imply a Lifshitz transition on the surface of the material.

Phenomenological QPI Patterns

Having established the coexistence of Fermi arcs and Dirac cones in TRI WSMs, we proceed to analyze their fingerprints in quasiparticle interference (QPI) patterns, which can be observed in scanning tunnelling spectroscopy experiments. QPI spectra can be approximated in terms of the joint density of states (JDOS) [9,10]. To understand the characteristic features arising in QPI spectra, we have therefore performed a phenomenological analysis of the JDOS. As a result, we identify two kidney-shaped features, corresponding to scattering events between the Fermi arcs and the Fermi pocket, as the universal QPI feature of the coexistence [7].

Tight-Binding Model

Next, we study a generic tight-binding model for a TRI WSM to investigate on a microscopic basis the coexistence of surface Dirac cones and Fermi arcs [7,10]. For this purpose, we start from a particular WSM phase and vary a tuning parameter \(\beta \). The results are presented in Fig. 2. With the chosen parameters, the model features four bulk Weyl points with topological charge \(\pm 1 \). For the topological invariants of the TRI planes we find that \(\nu_{k_z} = 1 \) while the remaining five \(\mathbb{Z}_2 \) invariants are all zero. At the (010) surface we therefore expect an odd number of Kramers pairs at \(k_z = \pi \) and an even number at \(k_z = 0, \pi \). For large values of \(\beta \) we find that Fermi arcs connect two Weyl nodes in the left half-plane and two Weyl nodes in the right half-plane (see Fig. 2a). In Fig. 2b we show the calculated JDOS of the system. By decreasing the parameter \(\beta \), a Lifshitz transition takes place (see Fig. 2c) and the connectivity of the Fermi arcs changes (see Fig. 2e): surface Fermi arcs connect now two Weyl nodes in the upper half-plane and two Weyl nodes in the lower half-plane. In addition, we find an elliptical Fermi pocket of surface states corresponding to a surface Dirac cone around the Z point of the surface BZ. The Fermi pocket is required for this particular connectivity of Weyl nodes to satisfy the number of surface states imposed by the invariants \(\nu_i \) which have not changed during the transition. In agreement with our general considerations, the corresponding JDOS exhibits the kidney-shaped features indicative of scattering between the Fermi arcs and the Fermi pocket (see Fig. 2f).
LaPtBi under Strain

We next show the coexistence of Dirac cones and Fermi arcs in the half-Heusler compound LaPtBi. Theoretical ab-initio studies suggest that LaPtBi realizes a WSM phase with eight Weyl nodes under a broad range of in-plane biaxial compressive strain [11]. We confirm this by performing DFT calculations employing the Full Potential Local Orbital method [12]. We find eight Weyl points of charge ±1 located at the $k_x = 0$ and $k_y = 0$ planes of the bulk BZ.

For the study of surface states, we investigate a semi-infinite slab with a (001) surface corresponding to a termination along one of the LaBi planes. In the (001) surface BZ, the Weyl points are projected pairwise on four different surface momenta thereby giving the projected Weyl points an effective topological charge of ±2. Hence, there must be two outgoing Fermi arcs for each Weyl-point projection. Moreover, we find that the projections of the TRI planes $k_x = k_y$ and $k_x = -k_y$ feature an odd number of surface Kramers pairs (see Fig. 3). This implies non-trivial \mathbb{Z}_2 invariants which we confirm by explicit calculations [7]. This gives rise to restrictions on the Fermi surface topology (see Fig. 3).
In Figure 3a, the Fermi level coincides with the Weyl-point energies. In this case, the Fermi arcs connect in a way that does not require an additional Fermi pocket. By raising the Fermi level, which can be accomplished for instance by doping, a Lifshitz transition takes place (compare Fig. 3b to Fig. 2c). Finally, the connectivity of the Weyl nodes switches which leads to the emergence of an additional Fermi pocket around the projected Γ point, as shown in Fig. 3c. This Fermi pocket is indeed associated with a surface Dirac cone (see Fig. 3d) as one can infer from surface Fermi surfaces at larger E_F. This establishes LaPtBi under strain as a potential candidate material for the coexistence of Fermi arcs and Dirac cones [7].

Funding: FET programme: FET-Open grant number 618083 (CNTQC); DFG: Grant No. OR 404/1-1 and SFB 1143; NWO: VIDI grant (Project 680-47-543)
Evidence for a Field-Induced Quantum Spin Liquid in α-RuCl$_3$

S.-H. Baek, A. U. B. Wolter, S. Nishimoto, J. van den Brink, B. Büchner

Abstract: The Kitaev model on a honeycomb lattice has attracted much attention due to its exact solubility and its quantum spin liquid (QSL) ground state, which would be relevant for quantum computing. We report a combined 35Cl nuclear magnetic resonance and specific heat study in the honeycomb lattice α-RuCl$_3$, a material that has been suggested to potentially realize a Kitaev quantum spin liquid ground state. Our results provide direct evidence that α-RuCl$_3$ exhibits a magnetic-field-induced QSL. For fields larger than \sim10 T, a spin gap opens up, while resonance lines remain sharp, evidencing that spins are quantum disordered and locally fluctuating. The spin gap increases linearly with an increasing magnetic field, reaching \sim50 K at 15 T.

State-of-the-art

When the interactions between magnetic spins are strongly frustrated, quantum fluctuations can cause spins to remain disordered even at very low temperatures [1]. The quantum spin liquid (QSL) state that ensues is conceptually very interesting – for instance, new fractionalized excitations appear that are very different from the ordinary spin-wave excitations in ordered magnets [2-5]. A QSL appears in the so-called Kitaev honeycomb model [6,7], which has motivated the search for its experimental realization and its topological QSL phases. Within the last 3 years the quest is mainly centered on α-RuCl$_3$, which is actually believed to be the prime material to-date to harbor physics related to the Kitaev model.

α-RuCl$_3$ is a Mott insulator with a 2D layered structure of edge-sharing RuCl$_6$ octahedra arranged in a honeycomb lattice. The spin and orbital moments on the ruthenium sites are strongly coupled by the spin-orbit interaction leading to the formation of isospins $J_{eff} = 1/2$. While α-RuCl$_3$ displays magnetic long-range order at low temperature of the so-called zigzag type due to additional non-Kitaev terms in the Hamiltonian, it has been proposed to still be proximate to the Kitaev spin liquid based on e.g. its small magnetic ordering temperature $T_N \sim 7$ K and spin excitation spectrum [8-13].

In α-RuCl$_3$ a very peculiar strongly anisotropic magnetism has been reported [8-10] based on measurements of the uniform magnetic susceptibility χ and the specific heat C_p/T. From the data it is clear that the antiferromagnetic (AFM) state observed at low temperature (T) is hardly affected by external fields along the c direction whereas the signatures of the long-range magnetic order disappear for moderate fields (H) of about 8 T applied along the ab plane. This pronounced anisotropy of the magnetism is also found in our crystals (see Fig. 1a and b). Note that whereas earlier studies [8-10] reported

Fig. 1: (a) Low-T specific heat C_p/T at zero and chosen magnetic fields. The data at zero field taken from Refs. [8,9] are compared. (b) Temperature dependence of the uniform magnetic susceptibility χ at $\mu_0H = 0.1$ T obtained for the four different field orientations with respect to the c axis. The inset enlarges the low-T region. [14]
either two magnetic transitions at \(T_{N1} \sim 8 \) K and \(T_{N2} \sim 14 \) K or a single transition at \(T_{N} \sim 13 \) K, our measurements show, essentially, a single transition occurring at a considerably lower temperature, \(T_{N} \sim 6.2 \) K. This evidences that our sample is of high quality with a (nearly) uniform stacking pattern [12].

NMR spectra

Since the \(^{35}\text{Cl} \) nuclei (nuclear spin \(J = 3/2 \)) possess a large quadrupole moment, the NMR spectra are strongly affected by the electric field gradient (EFG). In \(\alpha\)-RuCl\(_3\), the principal axis of the largest eigenvalue of the EFG tensor \(V_{zz} \) at \(^{35}\text{Cl} \) is expected to point along the shared edges of the RuCl\(_6\) octahedra, which are tilted \(-35^\circ\) away from the c axis as illustrated in Fig. 2a. As a result, there exist three inequivalent \(^{35}\text{Cl} \) sites, yielding a very complex and broad \(^{35}\text{Cl} \) spectrum in a magnetic field, as shown in Fig. 2b. Taking advantage of the fact that the influence of the quadrupole interaction is very sensitive to the angle between the direction of \(V_{zz} \) and \(H \), it is possible to separate one \(^{35}\text{Cl} \) spectrum from the other two spectra by applying \(H \) along one of the three local directions of \(V_{zz} \) at \(^{35}\text{Cl} \) (see Fig. 2b). Therefore, in the following we will present our NMR results with respect to the \(V_{zz} = c' \) axis.

The \(T \) dependence of the \(^{35}\text{Cl} \) NMR spectrum at 15 T is presented in Fig. 2c. Clearly, there is no signature of long-range magnetic order, which would cause a large broadening or splitting of the \(^{35}\text{Cl} \) line. Another feature is the appearance of a new NMR peak that replaces the original one below \(-75 \) K. This is due to a first-order structural phase transition [9,10]. Figure 2d presents the \(T \) dependence of the resonance frequency \(\nu \) in terms of the NMR shift \(K = (\nu - \nu_0)/\nu_0 \) where \(\nu_0 \) is the unshifted Larmor frequency. \(K \) is composed, mainly, of the three terms: \(K = A_{hf} + K_{spin} + K_{quad} \), where \(A_{hf} \) is the hyperfine (hf) coupling constant, \(K_{spin} \) the local spin susceptibility, \(K_{chem} \) the \(T \)-independent chemical shift, and \(K_{quad} \) the second order quadrupole shift. The strong upturn of \(K \) observed at low \(T \) is attributed to \(\chi_{spin} \), which is consistent with the macroscopic susceptibility (see Fig. 1b).

Fig. 2: (A) The principal axis of the EFG \(V_{zz} \) at the \(^{35}\text{Cl} \) nuclei is along the shared edges of the RuCl\(_6\) octahedra, resulting in three inequivalent \(^{35}\text{Cl} \) sites in field. (B) When \(H \parallel c' (\theta = 0) \), the \(^{35}\text{Cl} \) spectrum is extremely complex and broad. As \(H \) is either parallel or perpendicular to the direction of \(V_{zz} \), very narrow \(^{35}\text{Cl} \) NMR lines were obtained. (C) \(^{35}\text{Cl} \) NMR spectrum measured at \(\mu_0 H = 15 \) T as a function of \(T \) with cooling for two different field orientations. The first-order character of the structural transition is evidenced by the gradual transfer of the \(^{35}\text{Cl} \) spectral weight below \(T_s \sim 75 \) K, as clearly shown in the inset. (D) NMR shift \(K \) as a function of \(T \). The strong anisotropy of \(K \) increases rapidly with decreasing \(T \), approaching a saturated value below \(\sim 10 \) K. The dotted line is the estimated \(T \) dependence of \(K_{quad} \). The inset shows the \(K \) vs \(\chi \) plot, which yields the hyperfine coupling constants, \(A_{hf} = 17.4 \) kG/\(\mu_B \) and \(A_{hf} = 12.3 \) kG/\(\mu_B \). (E) Spin-lattice relaxation rate \(T_1^{-1} \) vs. \(T \). Whereas \(T_1^{-1} \) is nearly \(T \)-independent above \(T^* \sim 160 \) K, it increases (decreases) for \(H \parallel c' \) (\(H \perp c' \)) below \(T^* \), implying the development of in-plane spin correlations. [14]
Spin-lattice relaxation rate

Figure 2e shows the T dependence of the spin-lattice relaxation rate T_1^{-1} at $\mu_0 H = 15$ T. At high T (above 160 K), T_1^{-1} follows roughly the behavior expected for simple paramagnets. The different absolute values of T_1^{-1} for the two orientations of H are ascribed to the anisotropic hf couplings (see Fig. 2d). As T is lowered below T_*, T_1^{-1} increases for $H \parallel c'$ but it decreases for $H \perp c'$. Since the spin-lattice relaxation process is induced by the transverse components of spin fluctuations (SFs) with respect to the nuclear quantization axis, it is clear that T_1^{-1} for $H \parallel c'$ experiences stronger in-plane and weaker out-of-plane SFs than for $H \perp c'$. Hence, the increase of the T_1^{-1} anisotropy with lowering T is an indication of the development of strong in-plane SFs below T_*. At low temperatures, roughly below 50 K, T_1^{-1} starts to decrease. For the study of spin dynamics at low T, it is convenient to consider the quantity $(T_1 T)^{-1}$, which is proportional to the q-average of the imaginary part of the dynamical susceptibility. As shown in Fig. 3a, a broad maximum of $(T_1 T)^{-1}$ occurs near 30 K, being followed by a rapid drop towards low T in an identical manner for both field orientations. The rapid decrease of $(T_1 T)^{-1}$ implies a pronounced depletion of spectral weight in the spin excitation spectrum. The semilog plot of T_1^{-1} against $1/T$ drawn in Fig. 3b unambiguously reveals a spin gap behavior, $T_1^{-1} \sim \exp(-\Delta/T)$, with the gap $\Delta \approx 44$ and 50 K for $H \parallel c'$ and $H \perp c'$, respectively.

In order to study the H dependence of Δ, we measured $(T_1 T)^{-1}$ as a function of $H \parallel c'$ at low T. The results are shown in Fig. 3c and 3d. A spin gap is only seen for $\mu_0 H > 10$ T and Δ increases linearly with increasing H. At $\mu_0 H = 10$ T our data show a Curie-like upturn of the SFs, i.e., $(T_1 T)^{-1}$ diverges for low T. Upon further lowering H below 10 T, a sharp peak in $(T_1 T)^{-1}$ signals static magnetic order below T_N which decreases with increasing H. Below T_N, the 35Cl spectrum progressively spreads out with decreasing T, indicating the incommensurate character of AFM order [8]. Thus, our data for $(T_1 T)^{-1}$ clearly show a qualitative change of the behavior as a function of H: the peak due to static order occurring at low field is replaced by a spin gap for $\mu_0 H > 10$ T. At the border the spin dynamics...
suggest quantum criticality, i.e. a divergence of $(T_1T)^{-1}$ for $T = 0$. To back our NMR findings, we measured C_p/T for $H || c'$ (Fig. 4a). The anomaly associated with AFM order is rapidly suppressed toward 10 T, which perfectly agrees with the T_1^{-1} results. Further, we confirmed that at 14 T C_p/T is significantly suppressed at low T, evidencing the opening of a spin gap for $\mu_0H > 10$ T. An explanation of the observed spin gap in terms of static magnetic order can be ruled out. For example, the 35Cl spectra measured at $\mu_0H = 15$ T do not show any signature of magnetic order down to 4.2 K (see Fig. 2c). Moreover, it is difficult to attribute the extracted large spin gap to some kind of anisotropy gap occurring in the spin wave spectrum in magnetically ordered systems. Not only the measured large gap size, but also the rather isotropic gap behavior, contradicts any interpretation in terms of anisotropy gaps. The findings are also incompatible with the gap being due to a saturating ferromagnetic polarization of spins. The magnetization near 10 T is far less than the saturated value, particularly for $H || c'$ [15]. This clear-cut conclusion from the bare experimental findings is further supported by a theoretical analysis, where a forced-ferromagnetic state of α-RuCl$_3$ appears at a critical field of $\mu_0H_c = 23.2$ T [14].

T-H phase diagram

Our findings are summarized in the T-H phase diagram, see Fig. 4b. The data indicate a field-induced crossover from a magnetically ordered state at low fields to a disordered state showing gapped spin excitations in large fields. Moreover, as evident from Fig. 4b, the field dependence of $T_1^{-1}(T)$ reveals that Δ increases linearly with H above 10T. Our data suggest that when the magnetic field and gap become large enough, it can overcome the energy scale related to the residual non-Kitaev interactions so that a QSL emerges.

Funding: DFG Research Grant BA 4927/1-3, DFG Collaborative Research Center SFB 1143

Cooperation: Department of Physics, Chung-Ang University, Seoul, Republic of Korea
Magnetic characterization in the TEM: Skyrmions and electron vortex beams

S. Schneider, D. Pohl, D. Wolf, A. Lubk, B. Büchner, K. Nielsch, B. Rellinghaus

Abstract: Topological spin solitons and in particular skyrmions possess spin textures that provide for local variations of the magnetization at nanoscopic length scales. To exploit their unique transport and topological properties for, e.g., memory applications a detailed understanding of the interplay between skyrmionic structures, confined geometries (in thin films or at interfaces), lattice defects or inhomogeneities is indispensable. We aim at determining the details of skyrmionic spin textures in 3D and with nanometer and sub-nanometer resolution by combining, augmenting and developing transmission electron microscopy (TEM) based techniques such as Lorentz microscopy, electron holography and electron energy-loss magnetic chiral dichroism (EMCD) including recently developed vortex beam microscopy.

Skyrmions in thin films

Skyrmions [3] are topologically non-trivial vortex-like spin textures, anticipated for application in spintronic technologies, referred to as skyrmionics, in next generation magnetic data processing and storage due to their facile manipulation by spin-polarized currents of very low magnitude [4, 5]. In chiral-lattice ferromagnets without spatial inversion symmetry, such as the B20 compound Fe\textsubscript{0.95}Co\textsubscript{0.05}Ge (see Fig. 1a) investigated in this work, skyrmions arise from the interplay between the Dzyaloshinskii-Moriya interaction [6, 7] and ferromagnetic exchange mechanisms [8]. Indeed, these and similar competing interactions, such as surface dipolar interaction, may lead to a whole zoo of non-trivial spin textures, including helical, cycloidal and various skyrmionic phases (antiskyrmions [9], Néel skyrmions [10]).

Fig. 1: (a) Structure of Fe\textsubscript{0.95}Co\textsubscript{0.05}Ge in the cubic B20 phase. Fe and Co atoms are shown in violet and Ge in brown. (b) TEM image of a Fe\textsubscript{0.95}Co\textsubscript{0.05}Ge nanoplate in [001] with the diffraction pattern in the inset. (c) Skyrmion lattice and (d) helical phase as observed within the marked area in panel (a). The insets show the experimentally determined magnetic phase diagrams with the corresponding phases marked in red. H, C, S, and FP denote the helical, cycloidal, skyrmion and so-called “field polarized ferromagnetic” phases, respectively.
Unfortunately, little is known about the three-dimensional shape of skyrmions [11, 12], although considerable similarities to smectic liquid crystals may be established [13, 14]. Experimental studies on the 3D spin texture in skyrmions have not been reported to date. Here, we fill that gap by combining the concept of the transport of intensity equation (TIE) [15], focal series in-line electron holography (EH), and off-axis EH [16] to quantitatively reconstruct the projected magnetic field pertaining to both the helical and the skyrmion lattice phase in single crystal nanoparticles of the isotropic chiral magnet Fe\textsubscript{0.95}Co\textsubscript{0.05}Ge.

All applied methods have the drawback, that cycloidal modulations (and hence also Néel skyrmions) are invisible in these techniques, if they are aligned perpendicular to the beam, either because the z-component of the rotation vanishes directly or because the stray fields above and below the thin film sample cancel the lateral fields within the sample in projection.

The skyrmion phase in the Fe\textsubscript{0.95}Co\textsubscript{0.05}Ge particles was investigated using a double corrected FEI Titan3 80-300 microscope operated in imaging corrected Lorentz mode (conventional objective lens turned off) at an acceleration voltage of 300 kV. All measurements were performed at a sample temperature of 90 K and an applied field of 43 mT in out-of-plane direction (see Fig. 1d). A focal series of Lorentz TEM (L-TEM) images of a single isolated nanoplate oriented along [001] zone axis (see Fig. 1b) was recorded. Reconstruction of the electron wave’s phase and thereby the magnetic induction was obtained with the help of a modified Gerchberg-Saxton type algorithm. To supplement the focal series reconstructions from large field of views, smaller areas of the identical nanoplate were investigated by off-axis EH [16]. A direct tomographic investigation of the 3D structure of the skyrmionic lattice is currently experimentally unfeasible, because this would require an externally applied out-of-plane magnetic field to be tilted with the sample. In the current experimental setup, the skyrmions align along the magnetic field of the objective lens which has a fixed orientation along the optical axis.

Thus, indirect experimental evidence for the 3D structure of the skyrmionic lattice may be currently only inferred from a quantitative analysis of the projected magnetic induction in the sample conducted with the help of in-line and off-axis electron holography. Fig. 2a depicts a L-TEM micrograph in underfocus showing the hexagonal skyrmion lattice as dark contrast. The image is one out of 21 of the focal series used for in-line holography reconstruction of the object exit wave in amplitude and phase. Figs. 2b,c...
show magnetic induction maps $\mathbf{B}(x, y)$ in cylindrical coordinate representation visualizing the spin texture of the skyrmions by $\mathbf{B}_S(x, y)$ (Fig. 2b) and their donut-shaped magnitude by $\mathbf{B}_r(x, y)$ (Fig. 2c). Likewise, we observed magnetic induction maps (Figs. 2e,f) from a phase image reconstructed by off-axis EH (Fig. 2d) on the same Fe$_{0.95}$Co$_{0.05}$Ge nanoplate. Comparing the results of the two holographic methods, we measure a slightly higher magnetic induction $\mathbf{B}_r(x, y)$ with a slightly higher spatial resolution in the case of off-axis holography. However, we consistently observe a reduction of the B-fields ($\mathbf{B}_{\text{max}} = (0.2 ... 0.3) T$) with respect to the z-invariant case ($\mathbf{B}_{\text{max}} = 0.487 T$) obtained from magnetostatic simulations. Therefore, we propose two models for the 3D structure of skyrmions. One possible explanation for the reduced in-plane magnetic flux is a spiraling skyrmion through the thickness of the film, rather than z-invariant tube like skyrmions. Alternatively, magnetic dead layers at the surfaces or even more complex spin configurations may account for the experimentally determined magnetic field reduction.

Our recent experimental results corroborate the importance of the knowledge of the exact 3D structure for the skyrmion lattice in thin films. In order to overcome the pertaining experimental challenges, in-situ magnetic vector field application devices and auxiliary magnetic signals such as EMCD and electron vortex microscopy [17–20] need to be applied.

Electron Vortex microscopy

Recently discovered electron vortex beams (EVBs), which carry quantized orbital angular momenta (OAM) L, promise to also reveal magnetic signals similar to electron energy-loss magnetic chiral dichroism (EMCD) [21], which complementary to L-TEM and EH, provides direct access to the out-of-plane component of the magnetization. Since electron beams can be easily focused down to sub-nanometer diameters, this novel technique provides the possibility to quantitatively determine local magnetic properties with unrivalled lateral resolution. In order to generate the spiralling wave front of an electron vortex beam with an azimuthally growing phase shift of up to 2π and a phase singularity in its axial centre, specially designed apertures are needed [22, 23]. Dichroic signals on the L$_2$ and L$_3$ edge are expected to be of the order of 5% [24, 25].

The generation of EVBs is achieved by the implementation of a dislocation-type aperture into the condenser lens system. The setup allows for scanning TEM investigations (STEM) with vortex beams, whose OAM is selected by means of an additional discriminator aperture. New FIB cutting strategies facilitate the production of 50 μm wide and 300 nm thick high quality vortex apertures (see Fig. 3a). However, in the case of a fork-type aperture, the EVB are dispersed in the x-y plane resulting in a mixed probe that interacts with the magnetic sample.

We have recently devised an escape route to this problem by blocking any partial beams that carry other but the desired OAM prior to the interaction of the beam with the magnetic sample [19]. This is achieved by using a fork-type aperture in combination with a special condenser aperture to select a single partial beam with the chosen OAM (see Fig. 3b). This approach allows to generate atom-sized EVB with angstrom-sized...
probes and a well-defined OAM by which atomic resolution HR-STEM is achieved (see Fig. 4). Even the fingerprint of the Bessel wave function of the vortex beam that interacts with the sample can be seen in the HR-STEM images from an intensity drop in the centre of the atomic column images.

In addition, this novel technique is capable of atomic resolution EELS measurements, which is the prerequisite for atomic resolution EMCD measurements. The quality of the HR-STEM images and EELS-based elemental maps, which both provide atomic resolution, promise to open the door for future quantitative measurements of magnetic properties with ultimate spatial resolution and their local correlation with structural features at the very same position within the identical sample.

Funding: NSF grant ECCS-1609858, DGE-1256259, ERC grant agreement No 715620

Cooperation: Prof. Dr. Song Jin - University of Wisconsin-Madison, Madison, WI, USA; Dr. Marcus Schmidt - Max Planck Institute for Chemical Physics of Solids, Dresden, Germany; Dr. Peter Tiemeijer and Dr. Sorin Lazar, Thermo Fisher Scientific, Eindhoven, Netherlands; Dr. Xiaoyan Zhong, Tsinghua University, Beijing, China; Dr. Jan Rusz, Paul Zeiger and Jakob Spiegelberg, Uppsala University, Uppsala, Sweden
Sperm-Tetrapod Micromotor for Targeted Drug Delivery

H. Xu, M. Medina-Sánchez, V. Magdanz, L. Schwarz, F. Hebenstreit, O. G. Schmidt

Abstract: Bio-hybrid micromotors have been well developed for various bio-applications as they combine the advantages of their biological and the synthetic parts. An example of them are the sperm-hybrid micromotors, where the sperms are used as propulsion force while the synthetic component is used for their guidance towards the area of interest by using external magnetic fields. Here we present a new type of sperm-hybrid micromotor and its prospective application in targeted drug delivery. The single sperm serves as an active drug carrier and driving force, while a laser-printed microstructure, coated with iron, is used to guide and release the sperm in the in vitro cultured cancer spheroid by using an external magnet and a structurally imposed mechanical actuation, respectively. The tubular structure (also called “tetrapod”) features four arms which release the drug-loaded sperm cell in situ when they bend upon pushing against a tumor spheroid, resulting in the drug delivery, which occurs when the sperm squeezes through the tumor spheroid and fuses with the cancer cell membrane.

Guidance and sperm release

Arrays of polymeric tetrapods were fabricated by 3D laser lithography. The arms protrude from one opening of the microtube in a curved manner. The dimensions of the structure were optimized according to the dimensions of the sperm, allowing a single sperm to be blocked in (Fig. 1a). The fabricated tetrapods were coated with 10 nm Fe and 2 nm Ti by e-beam metal evaporation for magnetic guidance. When an approaching sperm cell reaches the microstructure, it gets mechanically trapped inside the cavity of the tubular part and starts to push the tetrapod forward (Fig. 1b). The tubular body of the tetrapod is only 2 μm longer than the sperm head, thus the sperm tail can still beat freely outside the tube to provide powerful propulsion as it was previously demonstrated by our group. Compared to free sperms, the average swimming velocity of the sperm-hybrid micromotors is nonetheless decreased by 43% from 73 ± 16 μm/s to 41 ± 10 μm/s (for 15 samples of sperm-hybrid micromotors). The asymmetrically distributed metal coating makes it possible to guide the tetrapod microstructure or the sperm-hybrid micromotor and even manipulate several of them simultaneously. Figure 1c illustrates a rectangular track of a guided sperm-hybrid micromotor. The hybrid motor was easily steered by changing the direction of the external magnet.

PDMS microfluidic channels were fabricated as a platform for the investigation of the sperm release mechanism. Once the rotation stopped, the sperm cell escaped when the tetrapod arms were bent and enlarged the opening (Fig. 1d). Tetrapods were pushed back by around 3 μm after the sperms escaped. The reason for this recoils is the existence of an elastic force that makes the tetrapod arms recover their original shape once the
pushing sperm is gone. Even though there is a substantial diversity in bovine sperm dimensions, swimming behaviors and fabricated tetrapods within a sample, more than 2/3 (15 out of 22) of the coupled motors were shown to successfully release sperm cells. It was reported that the sperm can generate a more powerful force when the head is pushing against an obstacle. In our simulation, the applied force was given according to the maximum pushing force (450 pN) [1] of a sperm in low-viscosity fluid (2.29 · 10^-3 Pa·s).

It was reported that the sperm force can be up to 20 times higher when the sperm is hyperactivated and swims in the viscoelastic fluid of the female reproductive system [2]. Thus, this mechanical trigger system can be expected to perform efficiently under physiological conditions.

Drug loading in sperm

Our previous research demonstrated the capture and guidance/transport of sperm cell towards in vivo fertilization, using tubular [3] and helical [4] microstructures, respectively. Here, the potential of sperm as a drug carrier was investigated. Doxorubicin hydrochloride (DOX-HCl, commercial anti-cancer drug) was employed as a model drug to evaluate the encapsulation performance of sperm cells. DOX-HCl-loaded sperms were obtained by simple co-incubation of DOX-HCl and live sperms. After purification by centrifugation, the incubated sperm sample was redispersed in sperm medium. The fluorescence image shows that majority of the sperm cells were loaded with DOX-HCl (self-fluorescent at 470 nm excitation wavelength), demonstrating an efficiency of 98% with a count of 3502 sperm cells (Fig. 2a). Drug loading efficiency was evaluated by calculating the loading ratio. The drug loading amount was determined by the difference between the initial amount of DOX-HCl before incubation and the residual amount in the supernatant after co-incubation, which were both quantified by their respective fluorescence signals. Figure 2b depicts the drug loading profiles related to DOX-HCl concentration. In the solution with a concentration of 3 × 10^6 sperms per mL, the loading amount of DOX-HCl increased approximately linearly with the concentration of DOX-HCl ranging from 10 to 200 μg/mL. Hence, the loading ratio remains at around 15% for all concentrations, indicating an average encapsulation of up to 15 pg of DOX-HCl per single sperm cell.

Fig. 2: (a) Fluorescence and brightfield overlay images of DOX-HCl-loaded sperms in (i) 10X and (ii) 40X. (iii) 3D reconstruction of 36 z-stack images with stack separation distance of 0.3 μm. (b) Plots of the drug loading results versus DOX-HCl concentrations in the loading solution (error bars represent the standard deviation of 4 replicates). The drug loading ratio is obtained by the ratio of the encapsulated DOX-HCl into the sperms by the original amount of DOX-HCl in solution. The drug loading amount is the encapsulated amount of DOX-HCl in 500 μl sperm solution at a concentration of 3 × 10^5 sperms/mL. The drug loading efficiency was evaluated by calculating the loading ratio, i.e. the ratio of the amount of drug loaded into sperms to the initial drug amount in solution.
Drug delivery to tumour spheroid

Hela spheroids were cultured as three dimensional in vitro model of cervix cancer. After 24 hours co-incubation of drug-loaded sperms with spheroids, sperms were found not only in the solution, but also in the spheroids as shown in the overlaid z-stack images. This proves the tissue penetration capability of sperms. Cell-killing efficacy was investigated by using SYBR Green LIVE/DEAD kit [5]. Spheroids without any sperms or drugs, with only unloaded sperms and with only DOX-HCl solution were cultured as control experiments. Fig. 3a illustrates the drug transport into a spheroid during 72 h when it was treated with DOX-HCl-loaded sperms. Red fluorescence shows the average intensity of 36 overlaid z-stack images and indicates the presence of DOX-HCl. Gradually, DOX-HCl was found in the center of the spheroid over time. After 72 h, the size of all spheroids decreased owing to drug-induced cell apoptosis. In addition, broken clusters and ruptured cells were observed in the medium. After 72 h, the percentage of dead cells after treatment with DOX-HCl-loaded sperms was significantly higher than in the control samples. Quantitative results of cell counting are shown in Fig. 3b. In the first 24 h of culture, there was no significant change in all groups, while after 48 h, DOX-HCl-loaded sperms showed a cell-killing effect comparable to the DOX-HCl solution treatment with the same amount of DOX-HCl (1.5 μg) in the same sample volume (100 μL). Unloaded sperms showed a negative effect on HeLa spheroids as well, as the percentage of live cells was only 37%, attributed to the spheroid disintegration induced by the sperm beating and hyaluronidases reaction (from sperm membrane) with the extracellular matrix.

In order to improve drug availability and to avoid undesired drug accumulation and sperm fusion with healthy cells, a precise transport of drug-loaded sperm cells is required. As performed in a microfluidic channel (Fig. 4a), the experiment showed that coupled sperms swam into the cell cluster after being released, and then the sperm head connected to the cells in the cluster due to membrane adhesion. In another experiment, the hybrid micromotor was guided for around 2 cm through the constriction channel and released sperm in a tumor spheroid. The sperm cell was released into the spheroid when the tetrapod arms hit the outer boundary of the tumor spheroid, and then continued swimming into the spheroid until it was trapped inside. As shown in Fig. 4b, fluorescence intensity at the sperm position decreased while the fluorescent area within the spheroid increased, indicating that DOX-HCl was released from the sperm cell and distributed within the spheroid. SEM images (Fig. 4c) demonstrates the fusion between sperm and HeLa cell. Anterior part of the sperm head was fused with the targeted HeLa cell while
the midpiece and the flagellum remained outside. Blebs and vesicles were observed on the HeLa cell that was fused with a DOX-HCl-loaded sperm, indicating its death by apoptosis (Fig. 4d, i). Cells fused with unloaded sperms did not show such blebs (Fig. 4d, ii) and thus were presumably still alive, just as unfused cells. Taking advantage of this cell fusion ability of sperm cells, our sperm-hybrid system yields a practical potential to enhance the drug uptake and availability by transporting it from cell to cell (sperm to HeLa cell) without dilution into the extracellular medium.

In summary, a novel drug delivery system based on sperm-hybrid micromotors has been developed. This system exhibits impressive advantages such as, efficient drug entrapment, precise guidance and enhanced drug-uptake by membrane fusion. Although there are still some challenges to overcome before this system can be applied in in vivo environments, such as imaging and biodegradability, sperm-hybrid systems can be envisioned to be applied in in situ diagnosis and treatment in the near future.

Funding: SPP Program “Microswimmer”
Metastable phase formation in undercooled Fe-Co melts under terrestrial and microgravity conditions

Abstract: Solidification of deeply undercooled metallic liquids with help of the electromagnetic levitation technique has been studied at the IFW Dresden since more than 20 years. Currently, in the frame of the ELIPS programme of the European Space Agency, our institute participates in the international EML microgravity experiments comprising parabolic flight campaigns and experiments on board of the International Space Station. Aiming to answer a fundamental question about the influence of the melt convection on solidification process, several industrially relevant materials, such as Fe-Co soft-magnetic alloys, Fe-Ni-Cr stainless steels, and light-weight Ti-Al-based alloys, are studied.

Non-equilibrium solidification on ground

Non-equilibrium solidification of high-performance Fe-Co-based magnetic alloys remains a matter of intensive fundamental research. It is known [1] that above the critical undercooling in a wide composition range these alloys solidify in a metastable phase with the bcc structure (δ-ferrite), which subsequently transforms into a stable γ-phase with the fcc structure (austenite), Fig. 1. The solidification pathway which involves transient metastable phase formation alters the microstructure and resulting material properties, thus making it crucial to understand the peculiarities of this process. The time between the two nucleation events (transformation delay) strongly depends on the alloy composition as the thermodynamic driving force, defined by the difference between the liquidus temperatures of stable and metastable phases, increases with increasing Co content. Besides, the delay time shows a strong dependence on the level of undercooling and on the melt convection, varying from microseconds at turbulent convective conditions to milliseconds in absence of the melt flow. Under terrestrial conditions, these two extreme cases are realised using different types of levitation techniques such as electromagnetic and electrostatic levitation, EML and ESL respectively [2]. In the EML, liquid metallic sample, held by Lorentz force within a high-frequency induction coil, experiences a strong electromagnetic stirring. On contrast, in the ESL, electrically charged drop, positioned by Coulomb force in a static electric field and heated by a laser, is in almost stagnant state. In both techniques, nucleation and growth of crystal phases are commonly studied by observation of the sample surface with a high-speed video camera, as demonstrated for the Fe60Co40 alloy in Fig. 2. Due to the release of the latent heat, the rapidly growing solid phase (δ-ferrite) is clearly distinguishable from the undercooled melt, and the secondary, γ-phase (austenite) – from the primary phase. Obviously, the main drawback of the video observations is that the crystalline phases and their sequence cannot be identified directly.

Fig. 1: High-temperature part of the binary Fe-Co phase diagram with metastable extensions of the solidus and liquidus lines of the bcc phase (dashed lines) into a stable fcc range [1]. Below the metastable extension of the δ-ferrite liquidus line the nucleation of both phases (δ-ferrite and austenite) becomes thermodynamically possible.

Fig. 2: Heat evolution on the sample surface during solidification of the Fe60Co40 alloy undercooled to 250 K in ground-based EML (false colour). The primary δ-ferrite (yellow) sweeps across the sample surface with the velocity of about 30 m/s. After a few μs, γ-phase (austenite, orange) nucleates and takes over the whole sample. Images are taken at 30 000 fps (corresponds to approx. 33 μs between each frame).
Time-resolved X-ray diffraction on levitated samples

Recently, the metastable formation of the δ-ferrite and its transformation to the stable austenite in the Fe-Co and Fe-Ni-Cr alloys [3] has been studied in situ by time-resolved diffraction of synchrotron X-rays conducted at the PETRA III storage ring at the German Electron Synchrotron (DESY) in Hamburg. The samples of about 1 gram mass were processed in a mobile EML facility, specifically developed for solidification and structural investigations through joint efforts of the Research Technology Division and our group (Fig. 3). The vacuum chamber of the IFW-EML enables sample processing either at a high vacuum or in a high-purity inert gas atmosphere. In case of the Fe-Co and Fe-Ni-Cr alloys, the chamber was evacuated to about 10^{-6} mbar and backfilled to about 250 mbar with high-purity He (6N). The positioning and heating of a sample is realized with a water-cooled copper coil powered by a generator operating at a frequency of 230 - 300 kHz. The cooling is achieved by directing the inert gas streams, the same as the chamber atmosphere, onto the sample surface. The sample temperature is measured with a single colour pyrometer operating at acquisition rate of 100 Hz.

The structure of electromagnetically levitated samples was measured in transmission geometry with monochromatic radiation of 121.3 keV and a beam size of 0.5 x 0.5 mm2. The scattered intensity was acquired using a flat-panel Perkin Elmer 1621 X-ray detector providing sufficient counting statistics at the acquisition rate up to 15 Hz. The detector was mounted perpendicular to the direct beam at 0.8 m sample-to-detector distance. The total scattering intensity as a function of the diffraction vector Q was obtained by azimuthal integration of the two-dimensional XRD patterns. Due to a high time-resolution of the PE 1621 detector, formation of the metastable phase in Fe-Co and Fe-Ni-Cr alloys has been for the first time captured in situ by XRD. An example of the high-energy XRD data measured during melting and solidification of the Fe$_{80}$Co$_{20}$ alloy, as well as the corresponding thermogram, are shown in Fig. 4.

Microgravity experiments with TEMPUS facility on parabolic flights

To explore the effects of the intermediate levels of induced convection, the undercooling and solidification experiments have been carried out using EML technique under reduced gravity conditions during joint DLR and ESA parabolic flight campaigns operated
Fig. 5: Top left panel: undercooling experiments with the Fe_{50}Co_{50} alloy in TEMPUS facility on a parabolic flight; top right panel – temperature profile (black line) acquired during the first parabola along with the values of the heater voltage (blue line) and the μg-level (green line); bottom panel – high-speed imaging of the solidification; rapid recrystallization event discloses formation of the metastable δ-bcc phase (the time between each frame is 25μs).

by Novespace SA in Bordeaux, France [4]. During a flight, the Airbus A310 ZERO-G aircraft performs a nose-up manoeuvre with a steep climb for about 20 seconds followed by reducing the engine thrust almost to zero. This injects the aircraft into parabolic free fall for about 22 seconds. Afterwards, the aircraft accelerates again and comes to a steady horizontal flight. These manoeuvres are usually repeated 30 times per flight day. The Airbus A310 ZERO-G is equipped with scientific instruments for different experiments under microgravity conditions, among which one of the largest is the TEMPUS facility (Fig. 5 top left panel); from German “Tiegelfreies elektromagnetisches Positionieren unter Schwerelosigkeit”, meaning containerless electromagnetic positioning under zero gravity [5]. The main difference of the TEMPUS from the ground-based EML is decoupling of the sample positioning and heating, realized by two separate coils inserted into each other. The power supplied to the positioning coil is considerably smaller than that required to levitate a sample in a ground-based EML, which allows minimizing the induced convection in the melt during parabolic flights.

To enhance the accuracy of the solidification studies, the TEMPUS facility has been equipped with a high-speed video camera recently. The extensive experimental program conducted in 2016 and 2017 campaigns included investigations of the Fe-Co alloys. The Fe_{50}Co_{50} composition has shown excellent performance reproducing the undercooling in two ranges: 85 ± 10 K and 300 ± 10 K (Fig. 5). The solidification experiments have been done at different levels of the residual heater voltage. This provided different stirring conditions in the melt, ranging from laminar to turbulent regime according to the magneto-hydrodynamic (MHD) calculations [7]. However, the detected time between the nucleation of δ-ferrite and austenite has shown a marginal deviation from that measured by EML at 1g for a given undercooling. This rather unexpected finding suggests that, in contrast to the MHD calculations, the laminar regime has not been completely reached for the Fe-Co system in the parabolic flight experiments. The limiting factor here is the minimal power required for stable positioning of the sample during parabolic flight.
Upcoming microgravity experiments with MSL-EML facility on board of the ISS

In 2014 a new microgravity platform for levitation experiments has become available at the European space laboratory Columbus on board of the International Space Station (ISS). The Material Science Laboratory Electromagnetic Levitator (MSL-EML) is a multi-user facility, developed in a long-term cooperation between the European Space Agency (ESA) and the German Aerospace Centre (DLR) [7]. Maintaining the main features of the TEMPUS facility – decoupling of the sample positioning and heating – the MSL-EML does not impose the time limitations on the experiment duration. More importantly, the monotonous operation under μg allows to further reduce the positioning power so that truly laminar flow conditions within the Fe-based samples can be reached [3]. The on-orbit experiments with defined levels of melt convection for the Fe60Co40 alloy, delivered and integrated to the MSL-EML in 2017, are planned for April 2018.

Funding: DLR Space Administration: project PARMAG, contract no. 50WM1546
ESA project MAGNEPHAS, contract no. 420014980

Cooperation: Institute of Materials Physics in Space, German Aerospace Center, Cologne, Germany; Photon Science group, DESY, Hamburg, Germany; Tufts University, Medford, USA; Ingenieurbüro Dr. Sellger, Ratingen, Germany; VDM Metals, Altena, Germany
Research Area 3

Magnetism in iron nanoislands tuned by epitaxial growth and magneto-ionic reactions

K. Leistner, M. Yang1, J. Zehner, K. Duschek, S. Oswald, A. Petr, C. Damm, K. L. Kavanagh1, K. Nielsch

Abstract: The control of interfacial properties offers genuine routes to tailor magnetism at the nanoscale. Epitaxial growth on suitable substrates is one approach to define the shape and orientation of nanobjects. We achieved individual cuboid iron nanoparticles by taking advantage of epitaxial growth during electrodeposition on GaAs. The interplay between metal nuclei growth and hydrogen evolution is found to be decisive for the epitaxial interface formation. While in this case, electrochemistry at the interface is exploited to irreversibly define the shape, structure and magnetism of the iron nanoparticles, reversible manipulation of solid/liquid electrolyte interfaces can be achieved by magneto-ionic reactions. We, for the first time, utilized iron/iron oxide nanoislands as magneto-ionic starting material. Voltage-controlled ON/OFF switching of magnetism is achieved in this case, which presents a highly promising path for the development of tunable and energy-efficient magnetic nanodevices.

Epitaxial iron nanocuboid assemblies

Iron/iron oxide nanoparticles are of great technological interest because they possess distinct electronic, catalytic and magnetic properties while at the same time they are abundant and non-toxic. Conventional synthesis routes for iron/iron oxide nanoparticles are often hampered by the toxicity of precursors, complicated reaction pathways and/or the need for high temperatures and reaction gas pressures. Electrodeposition is a room-temperature synthesis method that provides a competitive technological alternative to gas phase and vacuum techniques.

We investigated the electrodeposition of iron nanoparticles on GaAs(001) to achieve epitaxial growth. The use of an electrolyte with low iron ion concentration (0.01 mol/l FeSO4) and a short deposition time (10 s) resulted in the formation and growth of individual Fe nuclei. For electrochemical conditions with dominating hydrogen evolution, the deposited nanoparticles exhibit a faceted shape, crystallographic alignment and notable magnetic in-plane anisotropy. The beneficial role of the hydrogen evolution on the epitaxy is found to be related to the effect of hydrogen adsorption during the Fe/GaAs interface formation [1]. In consequence, we applied a compliance voltage during immersion of the substrate to boost the hydrogen evolution at the very start of the deposition. This lead to the formation of epitaxial nanocuboids that are aligned throughout the substrate [2]. The resulting surface morphology is shown in Fig. 1.

Fig. 1: Morphological analysis of iron nanoparticles electrodeposited on GaAs(001). (a) Surface secondary electron image by helium ion microscopy, (b) Atomic force microscopy image, (c) Atomic force microscopy height profile along the line AB as indicated in (b), and (d) schematic view of the orientation relationship between the iron nanoparticles and the GaAs(001) substrate.
Iron nanocuboids exhibit side lengths between 30 and 80 nm and heights of up to 30 nm. The shape and alignment of these nanoparticles, with respect to the GaAs substrate orientation, agrees with epitaxial cube on cube growth of body centered cubic (bcc) Fe(001) on GaAs(001) with predominantly {100} facets. The presence of an epitaxial crystalline bcc iron core is confirmed by cross-sectional analytical TEM investigations (Fig. 2) for all shapes. This finding is notable, since it reveals that the round- and square-based nanoparticles only differ in shape, but not in structure and crystallographic alignment. The nanoislands are covered by a 2-3 nm crystalline Fe₃O₄ shell, which preserves the iron core in ambient conditions. The ferromagnetic resonance spectra in Fig. 3 show the high-frequency magnetic response of the electrodeposited nanoparticles. A clear shift to a higher resonance field is observed for magnetization along the [110] axis in comparison to the [100] axis. Thus, the [100] axis is magnetically easier than the [110] axis, which is as expected from the cubic magnetocrystalline anisotropy of bcc iron.

The achieved electrochemical epitaxial growth of iron nanoparticles presents a novel and competitive fabrication route for stable iron nanoparticles attached to a substrate. This is especially favorable for catalytic and electronic applications requiring a conductive substrate. The aligned nanoparticles achieved in the present study also offer unprecedented routes for the fundamental study of the magnetic and electronic properties of individual nanoobjects. They will be helpful for the experimental validation of simulations describing arrays of nanoparticles with a single orientation and the study of magnetic spin structures evolving at reduced dimensions for specific shapes.
Magneto-ionic ON/OFF switching of iron nanoislands

The great prospects for low-power magnetoelectronic devices have triggered significant research activities in the field of voltage-control of magnetism. Magneto-ionic effects have recently been proposed to achieve voltage-programmable magnetic materials [3,4]. The magneto-ionic effect relies on voltage-triggered charge transfer reactions in solid or liquid electrolyte-gated architectures. For instance, a repeatable electrochemical transformation between metal and oxide can be exploited to manipulate magnetic metals at room temperature and via the application of only a few volts. This makes the magneto-ionic approach very competitive to many other magnetoelectric mechanisms such as multiferroics and magnetic semiconductors.

All previous studies related to magneto-ionic effects in metal films utilized physical methods such as sputtering or molecular beam epitaxy for film preparation. We show that ultrathin iron nanostructures suitable for magneto-ionic effects can be efficiently prepared by electrodeposition in ambient conditions. Iron is electrodeposited on a Au/Cr/SiO2/Si substrate. The 3D growth mode leads to a nanogranular morphology when the deposition is stopped prior to coalescence. Upon removal from the electrodeposition setup natural oxidation sets in and iron/iron oxide nanoislands are present as starting material.

To achieve voltage-control of magnetism in these electrodeposited nanoislands, an aqueous electrolyte containing 1 mol/l KOH was chosen that was already proven to be suitable for magneto-ionic effects in sputter-deposited continuous FeOx/Fe films [5]. The magneto-ionic reactions are directly linked to the electrochemical processes at the solid/liquid interface [6]. The cyclic voltammogram in Fig. 4 shows that the electrochemical reduction to metallic iron, the subsequent oxidation to iron oxyhydroxide, and the formation of the passive layer is achieved for the nanoislands.

Fig. 4: Cyclic voltammogram of electrodeposited iron nanoislands on Au polarized in 1 mol/l KOH. The cathodic and anodic current peaks show the electrochemically induced phase transformations. The potentials suitable for reversible oxidation and reduction between a passive layer composed of iron oxides and metallic iron are indicated.

The nanostructures were then repeatedly polarized in the electrolyte at suitable reduction and oxidation potentials, E_{red} and E_{ox}, respectively. The magneto-ionic changes were probed by in situ anomalous Hall Effect (AHE) measurements. The AHE curves obtained during application of E_{red} and E_{ox} are displayed in Fig. 5. A strong dependence of the maximum AHE resistance, which scales with the saturation magnetization, on the applied...
potential is evident. The switching between E_{red} and E_{ox} leads to a repeatable reduction to the ferromagnetic metal iron and oxidation to a non-ferromagnetic oxide phase with significantly lower magnetization. Almost complete ON/OFF switching is achieved. The effect is larger than in continuous sputtered films of similar nominal thickness [5], which can be seen as a direct result of the higher interface/volume ratio of the nanoisland structures. Thus, for the first time, the crucial impact of the morphology on the magneto-ionic effects could be elucidated. The electrochemical synthesis of magneto-ionic starting material is especially favorable because tunable magnetic material can also be deposited in channel walls and recesses. This may become important when applying magneto-ionically active layers, e.g., in magnet-based nanofluidic devices.

The presented magneto-ionically active electrodeposited nanostructures demonstrate an all-electrochemical approach for voltage-control of magnetism that does not require vacuum technologies. This opens up an important energy-saving pathway that may bridge the gap between tunable electromagnets involving Joule heating and non-tunable permanent magnets. On the base of magneto-ionic manipulation, unprecedented low-power yet tunable magnet-based nanoscale devices come within reach.

Funding: This work is partially supported by the DFG (project no. LE2558/1-1), NSERC, 4D Labs, and the excellence program initiative of the IFW Dresden.

Cooperation: 1Department of Physics, Simon Fraser University, Burnaby, Canada; Institute of Physics, University Kassel; Helmholtz-Zentrum Dresden-Rossendorf; Shanghai Institute of Microsystem and Information Technology, Shanghai, China
Addressable and Color-Tunable Piezophotonic Light-Emitting Stripes

Y. Chen, Y. Zhang, D. Karnaushenko, L. Chen¹, J. Hao¹, F. Ding, O. G. Schmidt

Abstract: As an emerging solid-state lighting (SSL) technology, piezophotonic light-emitting devices have great potential for future micro- and nanoscale systems due to the added functionality provided by the electromechanical transduction coupled with the ability of light emission [1]. The piezophotonic effect is a two-way coupling effect between piezoelectricity and photoexcitation properties, where the strain-induced piezoelectric potential modulates the band structure within piezoelectric phosphors, and thus tunes/controls the relevant optical process [2]. The realization of light emission stimulated by the piezophotonic effect is to initiate the mechanoluminescence (ML) process replacing p-n junction based light-emitting diodes (LEDs) for general lighting purposes. ML emission triggered by mechanical sources offers an enticing range of possibilities.

Piezophotonic device fabrication

The most common and controllable piezophotonic luminescence devices are composed of ML phosphor coated on the top of piezoelectric actuators. Relaxor ferroelectric single-crystal Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) has superior piezoelectric coefficients (d33 > 1500 pm/V) and electromechanical coupling factors (k33 > 90%) along the [001] crystallographic direction [3]. Piezophotonic light-emitting sources based on PMN-PT bulk are severely restricted by many challenges, such as a high voltage burden (up to hundreds of volts), low integration density and micro-manufacturing difficulties. Also, it is difficult to integrate many piezoelectric elements with different patterns together on a single chip.

In this work, a patterned single-crystal PMN-PT thin film of 7 μm thickness is obtained as the active layer. Zinc sulfides doped with Mn, Cu and Al ions (ZnS:Mn and ZnS:Cu,Al) were selected as the phosphors due to their intense and durable ML characteristics [4]. The utilization of piezoelectric thin films strongly reduces the voltage burden, and allows us to take advantage of mature micro-manufacturing techniques. Figure 1a schematically illustrates the device fabrication process. The (001)-oriented single-crystal PMN-PT was bonded on Si. Then it was mechanically grinded down to tens of microns. We further etched the PMN-PT film down to 7 μm thickness with RIE. Afterwards photolithography and gold sputtering were used to define the array of top...
contacts. We used focused ion beam (FIB) to etch the trenches into the single crystal PMN-PT thin film around the top contacts. Figure 1b shows the scanning electron microscopy (SEM) image of an array of the etched PMN-PT actuators on Si. Each element has a footprint of $120 \mu m \times 100 \mu m$. The inset of Fig. 1b shows the details of the trenches in the film. The trenches are deep enough to penetrate into the silicon substrate, facilitating subsequent undercut etching. The wet chemical undercut etching was used to release the single-crystal PMN-PT thin film from the substrate. As shown in SEM image, no cracks on the PMN-PT were found after the processing. The distinctive cantilever geometry of the single-crystal PMN-PT thin film is likely to be important to reduce the clamping strain and improve the piezoelectric response. ZnS:Mn thin films were afterwards deposited onto the PMN-PT actuators.

Piezoluminescence characterization

Figure 2 shows the piezoluminescence intensity as a function of the frequency and magnitude of the applied voltage. The luminescence intensity increases linearly when increasing the frequency from 25 to 150 Hz as shown in Fig. 2a and 2b. The luminescence intensity is also enhanced by an increase of the applied voltage from 8 to 24 Vpp (Fig. 2c). Photographs of tunable light emissions from the ZnS:Mn stripe is demonstrated in Fig. 2e. The piezophotonic device reaches a luminous efficacy of 1.2 lm/W at 24 Vpp and 150 Hz. The brightness increased linearly with the increasing frequency as shown in Fig. 2e. The luminance values were found to be 20.8 cd/m², 41.5 cd/m², and 64.2 cd/m², at the frequencies of 50 Hz, 100 Hz, and 150 Hz, respectively, while the applied voltage kept at 24 Vpp.

![Fig. 2: (a) Luminescence spectra at different frequencies under fixed voltage 20 Vpp. (b) Peak intensity at 596 nm versus applied frequency. (c) Luminescence spectra under different voltage amplitudes at 150 Hz. (d) Peak intensity at 596 nm versus square of amplitude. (e) Light-emitting images of ZnS:Mn stripes operating with 24 Vpp, and at varying frequencies of 50, 100, and 150 Hz (left to right, respectively). Scale bar indicates 50 μm.](image-url)
The ability to individually control the chip-integrated piezophotonic components is highly desirable. Incorporating such components onto a Si platform should be appealing for developing on-chip piezophotonic devices. The integration of such devices on PMN-PT bulk has been challenging because of the large footprint of individual light-emitting elements, high voltage burden, and high production costs. Here, we demonstrate a prototype piezophotonic device to circumvent these challenges. Figure 3a shows the sketch of such a device. Four light-emitting units are encoded from A to D, which can be electrically triggered independently. Each unit can produce local deformation not influenced by others. Figure 3b demonstrates the addressable characteristics of the device. When all the external voltage is switched off, there is no light-emission observed from all the four units (situation i). To individually address each unit, we first trigger unit A with 24 Vpp at 150 Hz and bright light can be observed in unit A only (situation ii). In situation iii, we switch off unit A, and excite units B and C. As shown in Fig. 3b, only units B and C glow. Situation iv shows that four elements are triggered simultaneously. The addressability shown here promises more flexibility for many intriguing applications, especially when used as light sources or displays with each unit as active pixel.

Piezoluminescence color manipulation

The ability to manipulate the color of the piezophotonic luminescence is highly desirable. By regulating the mixing ratio of two or more ML materials can realize color tuning. However, it is essentially an irreversible and ex-situ method. Previous research reported that the ML spectrum of ZnS:Cu,Al shifted to short wavelength as the strain rate was increased [5] due to the increasing recombination of the electrons in the conduction band (or shallow donor level) and holes in the valence band (or the e state of Cu) [6]. The normal mechanical stretching-releasing system can only provide the strain rate up to several hundred Hertz. Thus shifts of only several nanometers were observed. Here, our electrical-triggered PMN-PT based device can be stimulated up to megahertz, which is suitable for realizing color manipulation of ML from ZnS:Cu,Al contained phosphor layers. Figure 4a shows the spectral shape of ZnS:Cu,Al under the frequencies increased from 50 Hz to 100 kHz, the applied voltage was kept at 20 Vpp. The spectra are normalized to the peak of ZnS:Cu,Al at 522 nm for intuitively showing the changes. With the strain rate increased,
the light emission of ZnS:Cu,Al around 460 nm enhances and gradually dominates the emission. The calculated Commission Internationale de L'Eclairage (CIE) coordinates clearly suggest the shift from (0.27, 0.57) at 50 Hz to (0.20, 0.30) at 100 kHz (Fig. 4c).

In order to obtain a more colorful patterned device, a bilayer film composed of ZnS:Cu,Al and ZnS:Mn was deposited on the PMN-PT. Fig. 4b shows the normalized spectra of ZnS:Cu,Al/ZnS:Mn bilayer. The calculated spectra is normalized by the peak wavelength of the ZnS:Mn. Results have shown that the spectral shape of ZnS:Mn is unchanged with increasing frequency, which is consistent with previous reports. While, the intensity of ZnS:Cu,Al clearly increases. The calculated CIE coordinates shift from (0.39, 0.50) to (0.26, 0.31) with the frequency increasing from 50 Hz to 100 kHz for the ZnS:Cu,Al/ZnS:Mn bilayer emission. As a result, a color-tunable light emission from orange to blue-green is obtained. These results imply that continuous and reversible controllable color manipulation can be achieved through real-time regulating the strain actuating rate.

Funding: DFG Research Fellowships: DI 2013/2-1; BMBF: Q.Com-H(16KIS0106)

Cooperation: 1Department of Applied Physics, The Hong Kong Polytechnic University
Research Area 3 QUANTUM EFFECTS AT THE NANOSCALE 51

A quantum material that emits pairs of entangled photons on demand

R. Keil, M. Zopf, Y. Chen, B. Höfer, F. Ding, O. G. Schmidt

Abstract: Polarization-entangled photons play an essential role in many quantum communication concepts. Semiconductor quantum dots are among the leading candidates for the deterministic generation of entangled photons, offering pure single photon emission with high internal quantum efficiency. However, most investigated quantum dot species suffer from low yield, low degree of entanglement and poor wavelength control.

We show that with a new generation of GaAs/AlGaAs quantum dots grown by local droplet etching, a large solid-state emitter ensemble of highly entangled photon pairs can be obtained - without any post-growth tuning. Under resonant two-photon excitation, all measured dots emit single pairs of entangled photons with ultra-high purity, high degree of entanglement and ultra-narrow wavelength distribution at rubidium transitions. Therefore, this material system is an attractive candidate for the realization of a solid-state quantum repeater - among many other key enabling quantum photonic elements.

Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions

Single pairs of entangled photons are a key element in quantum information technology. They enable secure quantum communication [1], robust qubit transfer [2] and can distribute entanglement between separate computation nodes, rendering even a “quantum internet” possible [3].

However, deterministic sources of highly entangled photon pairs remain a challenge. So far, photons generated from spontaneous parametric down conversion [4] have been used to demonstrate various entanglement-based concepts, but this process is characterized by Poissonian statistics, i.e. a tradeoff has to be made between source brightness and multi-photon emission probability, fundamentally limiting their applicability in complex quantum protocols.

Semiconductor quantum dots (QDs) are among the leading candidates to overcome these restraints. The cascaded decay of the biexciton (XX) via the intermediate exciton states (X) generates single, polarization-entangled photon pairs $|\psi^+\rangle = \frac{1}{\sqrt{2}} (|HH\rangle + |VV\rangle)$, where H and V denote horizontal and vertical linear polarization. However, anisotropies in strain, composition and shape can reduce the QD symmetry, resulting in two non-degenerate X states split by the fine structure splitting (FSS). The resulting two-photon state has the form $|\psi\rangle = \frac{1}{\sqrt{2}} (|HH\rangle + e^{i\pi/8} |VV\rangle)$, where T_1 is the radiative lifetime of the exciton and S the FSS. To obtain a high degree of entanglement, the experimental strategies are to reduce the FSS S and/or the exciton lifetime T_1.

Despite various investigated material systems and architectures [5-8], most QD species suffer from extremely low yield, low degree of entanglement and poor wavelength control, blocking the way towards scalable applications.

In this work, we show that a large ensemble of as-grown polarization-entangled photon emitters can be obtained, using an emerging family of GaAs/AlGaAs QDs grown by local droplet etching [9]. These QDs exhibit very small FSS and short radiative lifetimes. Under pulsed resonant two-photon excitation all measured QDs emit single pairs of entangled photons with ultra-high purity and high degree of entanglement (fidelity F up to 0.91). These QDs offer a deterministic wavelength control and ultra-narrow wavelength distribution, specifically tailored to match the optical transitions of rubidium. Therefore, we envision a hybrid quantum repeater that incorporates QD-generated entangled photon qubits interfaced with a rubidium-based quantum memory.
Sample growth

The QDs in this work are fabricated by solid-source molecular beam epitaxy. Fig. 1a shows a sketch of the processes involved in the QD formation. Al is deposited on AlGaAs, forming liquid droplets. Driven by concentration gradients, dissolution of As and diffusion of Al induce the formation of nanoholes with high in-plane symmetry, which crystallize under As atmosphere and are then filled with GaAs and overgrown by AlGaAs to obtain QDs with three-dimensional carrier confinement.

The QD emission wavelength depends on the GaAs infilling amount. Envisioning a hybrid interface between QD and an atom based quantum memory several samples with varying GaAs amount have been grown, targeting the D1 and D2 transition of rubidium at a wavelength of 794.9 and 780.2 nm. Fig. 1b shows the exciton wavelength distribution for two samples with 2 nm (blue) and 2.75 nm (green) GaAs. Statistics on over 50 QDs show an unprecedented control on the central emission wavelength and distribution with mean values of 779.8 ± 1.6 nm and 796.3 ± 1.3 nm.

The symmetric shape in combination with negligible composition intermixing and a strain-free interface between GaAs and AlGaAs suggest low FSS values. Fig. 1c shows the statistical distribution of the FSS for the GaAs/AlGaAs QD sample studied in this work (blue) and a typical InAs/GaAs QD sample (grey) for 45 and 114 measured dots. The GaAs QDs feature an average FSS of only 4.8 ± 2.4 eV that is among the best values reported for any QD species and is a prerequisite for highly polarization-entangled photon emission.

Resonant excitation of the biexciton

A QD emitting close to the Rb D2 transition (∼ 780.2 nm) is optically excited by a laser pumping the surrounding higher-bandgap AlGaAs. The resulting spectrum (Fig. 2a) shows the exciton (X) at λ = 778.5 nm and the biexciton (XX) transition at λ = 780.1 nm among other excitonic states.

In order to drive the XX transition coherently, the two-photon resonance of the XX state is addressed by a pulsed laser. The laser background can be effectively suppressed using notch filters, resulting in a very pure spectrum (Fig. 2b).

To verify pure single-photon emissions from XX and X, we perform an autocorrelation measurement using a Hanbury Brown and Twiss setup. The autocorrelation function $g^2(\tau)$ plotted over the photon arrival delay τ shows a clear absence of coincidences at zero delay and proves the high purity single-photon emission (Fig. 2c).

Fig. 1: Growth of highly homogeneous GaAs/AlGaAs quantum dots. (a) Schematic of involved processes during the quantum dot (QD) formation. (b) Exciton emission wavelength distribution for two different samples tailored for coupling to atomic transitions of rubidium. Inset: sketch of envisioned interface between QD and an atomic quantum memory. (c) Occurrence of the exciton fine structure splitting S, comparing the GaAs/AlGaAs QDs (blue) with InAs/GaAs QDs (grey). Inset: scheme of the biexciton decay.
Fig. 2: Resonant excitation of the biexciton state in GaAs/AlGaAs quantum dots. (a) QD emission spectrum for above-band excitation, showing dominant exciton (X) and biexciton (XX) emission. (b) Resonant excitation of the XX state using a two-photon excitation scheme. The residual laser is suppressed by using notch filters. (c) Intensity-autocorrelation measurement of the XX and X transition confirming very pure single-photon emission. (d) Measurement of the fluorescence lifetime T_1 for the XX and X state. The solid lines are theoretical fits. Short radiative lifetimes of $T_{1,XX} = 112$ ps and $T_{1,X} = 134$ ps are determined.

Next, we measure the luminescence lifetime T_1 by recording the intensity correlation between the laser pulse and the arrival time of the photons (Fig. 2d). The extracted lifetimes $T_{1,XX} = 112$ ps and $T_{1,X} = 134$ ps are among the lowest values recorded for as-grown QDs. The lifetime-limited linewidth of the X emission is therefore $\Delta E = 4.9$ μeV, close to the average FSS in our sample.

Evaluating the degree of entanglement

To determine the degree of entanglement, a QD with a FSS of $S = 2.3$ μeV is chosen, representing a large portion (~22%) of QDs in the sample. The emitted photons are sent onto a beam splitter with polarization analyzers in each output arm. The X and XX photons are spectrally separated and sent to single-photon detectors and the second-order cross-correlation function $g^{(2)}_{XX,X}$ for any polarization configuration can be obtained. Fig. 3a shows $g^{(2)}_{XX,X}$ for three bases of co-polarized and cross-polarized photons: rectilinear (HV), diagonal (DA) and circular (RL) polarization bases. For better visibility an offset in the delay time is added in the cross-polarized case. (b,c) Real (b) and imaginary (c) part of the two-photon density matrix. The fidelity extracted from this matrix is $F = 0.91$.

Next, the density matrix ρ of the two-photon state is reconstructed from cross-correlation measurements for 16 different base configurations. The matrix is shown in Fig. 3, split into real (Fig. 3b) and imaginary part (Fig. 3c). It is characterized by off-diagonal, real-part matrix elements close to 0.5, while all other elements are close to zero. This is in agreement with the expected entangled state and a fidelity to $|\psi^+\rangle$ of $F = 0.91$ is obtained, which surpasses any other reported QD system.
Furthermore, six additional QDs were selected, representing the full range of observed FSS. Fig. 4 shows the values of F plotted as a function of the FSS (black circles), overlaid on the FSS distribution in the sample (grey histogram). The data from Zhang et al. [10] are shown as reference for typical InAs/GaAs QDs (orange).

All measured dots exhibit fidelities $F > 0.5$ leading to the conclusion that almost 100% of the QDs in the sample generate polarization-entangled photons, which is a milestone for solid-state entangled photon sources.

Fig. 4 also shows the theoretically expected fidelity versus the FSS for the range of observed X lifetimes [11]. The significantly higher fidelities compared with that of InAs/GaAs QDs even for vanishing FSS are expected to originate from the weak electron–nuclear spin hyperfine interactions in this type of QDs.

Discussion

In summary, we demonstrated a new type of solid-state polarization-entangled photon source based on an emerging family of GaAs/AlGaAs QDs. These QDs can be grown with unprecedented wavelength control, ultra-small FSS and short radiative lifetime, enabling entanglement fidelities up to $F = 0.91$, which are among the highest values reported for QD-based sources. Remarkably, the whole set of measurements draws an unambiguous conclusion that we have obtained a large ensemble of entangled photon emitters on a single wafer, with almost 100% of QDs in the sample having fidelities >0.5 and a great fraction are expected to exhibit fidelities $F > 0.8$ without any post-growth tuning.

We envision that a number of key enabling quantum photonic elements can be practically implemented by using this novel material system, in particular a quantum repeater as the backbone for long-range quantum communication.

Funding: ERC Starting Grant No. 715770 (QD-NOMS), BMBF Q.Com-H (16KIS0106), European Union Seventh Framework Program 209 (FP7/2007–2013) under Grant Agreement No. 601126 210 (HANAS)
Single-electron lanthanide–lanthanide bonds inside the fullerene cage: en route to unusual electronic and magnetic properties

Abstract: High chemical and thermal stability of fullerenes protects endohedral entities from the environment and stabilizes unusual species, which cannot exist otherwise. In particular, when lanthanide dimers are enclosed inside the carbon cage, the covalent lanthanide-lanthanide bond can be formed. The metal–metal bonding orbital occupied with one or two electrons is then the frontier orbital of the fullerene molecule, and its population can be manipulated by redox reactions. Especially interesting are dimetallofullerenes featuring single-electron metal–metal bond, because the presence of an unpaired valence spin results in giant exchange interactions and strong coupling of the 4f-derived spins. For the lanthanides with large magnetic anisotropy (Dy, Tb), such dimetallofullerenes exhibit single molecule magnetism with high blocking temperature of magnetization.

Magnetic and optical properties of lanthanides earned them a plethora of practical applications and reinforce continuous exploration of the new possibilities the partially-filed 4f-shell can provide for academic and applied research in chemistry, physics, and material science. The search for unusual oxidation states of lanthanides is one of the directions, in which the research is going, and the compounds with a formal 2+ oxidation state have been obtained for a majority of the lanthanide row. However, the synthesis of molecular compound with covalent lanthanide-lanthanide bonds is still challenging for traditional organometallic chemistry. This obstacle can be circumvented by confining lanthanide ions within a limited space, such as the inner space of a fullerene molecule.

In endohedral metallofullerenes (EMFs), metal atoms transfer their valence electrons to the carbon cage. The EMFs can be then described as non-dissociative “salts,” with endohedral metal atoms as cations and fullerene cages as anions [1]. In dimetallofullerenes (di-EMFs, i.e. EMFs with two metal atoms), positively charged metal atoms repel each other. However, certain typically trivalent metal atoms in di-EMFs form a metal–metal bonding orbital, whose energy is close to the energy of the frontier fullerene molecular orbitals (MOs). Whether the M–M bonding MO in a given di-EMF involves the HOMO or the LUMO depends on the relative energies of the cage frontier MO and the energy of the metal–metal bonding orbital [2].

Fig. 1 compares MO energies of two representative fullerene cages often found in di-EMFs, C_{80}-Ih and C_{82}-C_{3v}, to the orbital energies of two lanthanide dimers, La_{2} and Lu_{2} [3, 4].

Fig. 1: Molecular orbital energy levels of empty fullerenes C_{80}-Ih and C_{82}-C_{3v}, compared to those of the metal dimers La_{2} and Lu_{2}. Occupied MO levels of fullerenes are shown as black lines, unoccupied levels – as pink lines. Gray arrows indicate donation of 6 or 4 electrons from metal dimer to fullerene in corresponding dimetallofullerenes.
C80-Ih has a small gap between the HOMO and the 3-fold degenerate LUMO, and the open-shell electronic structure of the molecule is very unstable. However, if the LUMO is filled with six electrons, the structure is stabilized. C80-Ih is thus an archetypical cage for EMFs with 6-fold electron transfer from endohedral species to the fullerene. A good example of such species is La2 dimer. It has 6 valence electrons with relatively high energies (higher than the energy of the fullerene LUMO), so that when the La2 dimer is encapsulated inside C80-Ih, a complete transfer of all six valence electrons to the fullerene occurs. The formal charge distribution in the resulting di-EMF molecule is then (La3+)2@C806−, the HOMO is localized on the fullerene, whereas the LUMO resembles the (6s)σg\textsubscript{2} orbital of the pristine La2 dimer.

The lanthanide contraction results in a substantially different electronic structure of Lu2 when compared to that of La2. The valence MOs of the Lu2 span a broader energy range, and its (6s)σg\textsubscript{2} level is lower than the LUMO of C80-Ih. As a result, the hypothetical Lu2@C80-Ih has an open-shell electronic structure with 5 electrons transferred from Lu2 to the C80-Ih cage. One electron still occupies the Lu–Lu bonding MO, forming thus a single-electron metal-metal bond. The fullerene C82-C\textsubscript{3v} appears to be a more suitable host for Lu2 because it has two low-energy unoccupied MOs and hence acts as an acceptor of four electrons. In Lu2@C82-C\textsubscript{3v}, four electrons of Lu2 are donated to the fullerene cage, whereas the (6s)σg\textsubscript{2} orbital of Lu2 remains occupied by two electrons. The formal charge distribution in the di-EMF is then (Lu2+)2@C824−, and the molecule features two-electron Lu–Lu bond [2].

Thus, early lanthanides prefer to form di-EMF without M–M bonds, whereas lanthanides close to the end of the 4f-row are predisposed to form di-EMFs with M–M bond. In both types of di-EMFs, the metal-metal bonding MO is the frontier orbital, and hence its population can be changed in the course of suitably chosen redox reaction. For instance, oxidation of M2@C82 molecules (M = Sc, Y, Er, Lu) corresponds to the removal of the electron from the metal-metal bond. Therefore, their oxidation potentials are metal-dependent and vary in a rather broad potential range of 0.4 V (Fig. 2) [3]. Enhanced contribution of metal s-atomic orbital to the spd-hybrid M–M HOMO of M2@C82 yields a large isotropic hyperfine coupling constant for metals with non-zero nuclear spin in

Fig. 2: (a) Square wave voltammetry of several M2@C82-C\textsubscript{3v} fullerenes at their first oxidation step (M2 = Lu2, YLu, Er2, ErSc, Sc2); (b) HOMO orbitals for Lu2@C82, Y2@C82, and YLu@C82; (c) EPR spectrum of Sc2@C822+ cation in o-dichlorobenzene solution at room temperature, a(45Sc) = 199.2 G, g = 1.994.
cation radicals \([M_2@C_{82}]^{2+}\). A striking example is the cation radical \([Sc_2@C_{82}]^{2+}\), which exhibits well-resolved EPR spectrum with the hyperfine structure spanning 2800 Gauss. Instead of 15 lines expected for two equivalent Sc with nuclear spin of 7/2, experimental spectrum comprises 64 lines caused by a hyperfine splitting with the large \(^{45}\)Sc hyperfine constant of 199.2 G (Fig. 2c). Formation of the single-electron Er–Er bond in \([Er_2@C_{82}^2]^2+\) was also supported by SQUID magnetometry. The oxidation of \(Er_2@C_{82}\) strongly modified the spin state of the endohedral \(Er_2\) unit, presumably creating a three-center \([Er^{3+}–e–Er^{3+}]\) system with stronger exchange interactions than in the pristine \(Er_2@C_{82}\) [3].

Peculiar electronic structure is found in di-EMFs with Yttrium and lanthanides in the middle part of the lanthanide row (Gd–Ho). In the arc-discharge synthesis these metals do form \(M_2@C_{80}^-\) molecules, but their ground electronic state is a triplet with the formal charge distribution \((M_2)^{5+}@C_{80}^{-}\), similar to aforementioned \(Lu_2@C_{80}\). The –M bonding MO of such di-EMFs is occupied by a single electron, and another unpaired spin is delocalized over the fullerene cage. Electronic structure of \(M_2@C_{80}^-\) can be stabilized by adding an electron, which yields to closed-shell electronic structure of the fullerene cage, \((M_2)^{5+}@C_{80}^6^-\). The non-charged form of these di-EMFs are then obtained by substitution reaction with benzyl bromide, giving air-stable \(M_2@C_{80}(CH_2Ph)\) derivatives still featuring the single-electron \(-M–M\) bond (Fig. 3a) [5]. For \(M = Y\), localization of the spin density on the Y–Y bonding MO is confirmed by EPR spectroscopy, which revealed large isotropic \(^{89}\)Y hyperfine coupling constants near of 80 G and significant hyperfine- and g-tensor anisotropy in the frozen solution (Fig. 3b,c). The first reduction potentials of \(M_2@C_{80}(CH_2Ph)\) derivatives are metal-dependent and span the range from \(-0.52\) V in \(Y_2@C_{80}(CH_2Ph)\) to \(-0.86\) V in \(Gd_2@C_{80}(CH_2Ph)\), showing that the surplus electron populates the single-occupied \(-M–M\) bonding MO, thus forming a “standard” two-electron bond in anions [4].

Dy\(_2\)@\(C_{80}(CH_2Ph)\) is found to be a single molecule magnet with broad hysteresis and unusually high blocking temperature of magnetization of 22 K (Fig. 4) [5]. Measurements of the relaxation times of magnetization showed that at low temperature the main relaxation mechanism is the temperature-independent quantum tunneling, whereas at
higher temperature the relaxation is dominated by the Orbach mechanism with the barrier of 613 K (Fig. 5). Unprecedented magnetic properties of Dy@C80(CH2Ph) are due to the giant exchange interaction between lanthanide ions mediated by the unpaired electron delocalized between them. The three-center spin system of Dy@C80(CH2Ph) is described as [Dy3+ – e – Dy3+]. In the ground state, all three moments are parallel and couple ferromagnetically to form a single spin unit of 21 μB with a Dy-electron exchange constant of 32 cm−1 (46 K). The barrier of the magnetization reversal is assigned to the exchange excited state, in which the spin of one Dy center is flipped (Fig. 5b) [5]. Semi-occupied M–M bonding MO is thus essential to achieve unprecedented magnetic properties in lanthanide d-EMFs. It may be also beneficial for the spin-polarized electronic transport through single fullerene molecules, which can lead to single-molecule electronic and spintronic devices.

Fig. 4: (a) Determination of blocking temperature T_B of Dy@C80(CH2Ph): the sample is first cooled in zero-field to 1.8 K, then magnetic susceptibility χ is measured in the field of 0.2 T with increasing temperature (red curve), then the measurement is performed at cooling down to 1.8 K (blue curve); the vertical bar denotes T_B. (b) Hysteresis of magnetization in Dy@C80(CH2Ph) measured at various temperatures.

Fig. 5: (a) Magnetization relaxation times of Dy@C80(CH2Ph) obtained from dc- and ac-measurements in zero field and in the constant field of 0.4 T. The inset shows χ'' values measured at different temperatures and frequencies. (b) Low-energy part of the spectrum of the effective spin Hamiltonian of the [Dy3+ – e – Dy3+] system with transition probabilities visualized as lines of different thickness (thicker lines correspond to higher probabilities). A schematic description of the spin alignment in the ground state and exchange-excited states is also shown (Dy spins – green arrows, single electron spin – dark blue arrow). With the exchange coupling constant $J_{Dy,e} = 32$ cm$^{-1}$, the energy of the first exchange excited state matches the Orbach barrier of 613 K.

Funding: European Research Council (ERC): grant agreement No 648295 “GraM3”

Cooperation: ¹Univ. Zürich

Theoretical prediction of a giant anisotropic magnetoresistance in carbon nanoscrolls

C. H. Chang and C. Ortix

Abstract: Advanced nanotechnology is continually gifting us with low-dimension nanoarchitectures that have rich forms of geometry to host novel magnetic states. Snake orbits, for instance, are trajectories of charge carriers curving back and forth, which form at an interface where either the magnetic field direction or the charge carrier type is inverted. In graphene p-n junctions, their presence is manifested in the appearance of magnetoconductance oscillations at small magnetic field. Here we show that signatures of snake orbits can also be found in curved nanomaterials by studying the classical magnetotransport properties of carbon tubular nanostructures subject to relatively weak transversal magnetic fields where snake trajectories appear in close proximity to the zero radial field projections. In carbon nanoscrolls the formation of snake orbits leads to a strongly directional dependent positive magnetoresistance with an anisotropy up to 80%.

Carbon Nanomaterials

Carbon nanomaterials, such as carbon nanotubes (CNT) [1] and graphene [2], continue to trigger a lot of attention due to their very unique structural and physical properties [3]. In recent years, another carbon nanomaterial, called carbon nanoscroll (CNS), has emerged [4]. It is a spirally wrapped graphite layer that, unlike a multiwalled carbon nanotube (MWCNT), is open at two edges and does not form a closed structure. CNSs are scrolled from an undefined number of graphene layers. In addition, the chemical process can potentially induce unexpected defects in the material, thereby lowering its quality. Controlled fabrication of high-quality CNSs has been instead achieved [5] using isopropyl alcohol solutions to roll up high-quality monolayer graphene predefined on Si/SiO₂ substrates.

The peculiar geometric structure of CNSs yields unusual electronic, and transport properties in uniform electric and magnetic fields. The natural presence of edge nanoscrolls in graphene, for instance, has been predicted to be at the basis of the poor quantization of the Hall conductance in suspended samples [6]. This is due to the fact that inside the scrolls, the electrons respond primarily to the normal component of the externally applied magnetic field [7], which oscillates in sign and largely averages out.

In this work, we theoretically predict a strongly directional dependent magnetoresistance (MR) in CNSs subject to relatively weak transversal magnetic fields. The reason for the occurrence of this phenomenon is that the oscillation of the effective magnetic field felt by the electrons in a CNS leads to the formation of classical snake orbits, whose number changes with the direction of the externally applied magnetic field. As a result, we find a giant anisotropic magnetoresistance (AMR) with a magnitude of up to 80%, a value comparable to the AMR observed in the quantum anomalous Hall phase of ferromagnetic topological insulator thin films [8], and an order of magnitude larger than the bulk AMR of conventional ferromagnetic alloys [9]. This suggests a novel route towards miniaturized nanoscale devices exploiting the AMR effect for magnetic recording, for instance.

Magnetic states and Magnetotransport of Carbon Nanotubes

To prove the assertions above, we first elucidate the effect of snake orbit formation by analyzing the magnetotransport properties of single-walled CNFs subject to transversal magnetic fields in the classical diffusive transport regime. Figure 1 shows the ensuing behavior of the MR Δρ∥/ρ₀ = ρ∥(B)/ρ∥(0)-1. When the applied magnetic field is weak, the Lorentz force bends the trajectory of a carrier into the helix orbit (see left-up
panel in Fig. 1), which leads to the MR increasing with the square of the strength of applied field. When the magnetic field is large enough, the carrier at the surface perpendicular to the field moves in a cyclotron orbit, and the carrier at the surface parallel to the field moves in a snake orbit for it inverts chirality around the surface. The surfaces with cyclotron orbits are insulating, and the two surfaces with snake orbits are respected to two conduction channels (see right-down panel in Fig. 1). Since the width of conduction channels decreases with the field strength by a ratio $B^{-0.5}$, snake orbits finally results in a MR increasing with the square root of the field. The details of theoretical approach using Kubo formula are provided in Ref. 10.

To verify the validity of our approach, we have compared our theoretical results with the MR measurements performed by Kasumov and collaborators [11] on a 6 nm outer radius isolated multi-winding CNT, which show an inflexion point in the MR at an external moderate magnetic field ≈ 1.6 T. From the condition that the inflexion point occurs when the CNT radius exactly matches the effective cyclotron radius, we obtain $m v_F = 1.54 \times 10^{-27} \text{m kg/s}$, which is compatible with a Fermi velocity [12,13] of the order of 10^5m/s and a cyclotron mass approximately two order of magnitudes smaller than the mass of free carriers. By further taking into account a sizable magnetic-field independent resistivity, which we attribute to inter-wall and contact resistivities suppressing the MR by approximately one order of magnitude, we find a perfect agreement in the behavior of the MR as a function of the magnetic-field strength [see Fig. 1]. Moreover, the value of the mean free path $l = 2R_{\text{CNT}} = 12 \text{nm}$ is consistent with the experimental values reported in high-biased SWCNT [14].

Magnetic states and Magnetotransport of Carbon Nanoscrolls

Having established that our analysis in the classical diffusive transport regime correctly accounts for the behavior of the MR in CNTs up to moderate magnetic field strengths, we now move to analyze the magnetotransport properties of CNSs taking into account their peculiar geometric structure. In the remainder we will restrict ourselves to a one-winding CNS. Figure 2b shows the magnetic field dependence of the conductivity along the CNS azimuthal direction $\sigma_{||} = \sigma_{\text{ss}}$ measured in units of the conventional

![Fig. 1: Classical magnetoresistance of a CNT. Log-log plot of the MR as a function of the magnetic field strength B measured by the ratio between the CNT radius R_{CNT} and the characteristic cyclotron radius R_{cycl}. ρ_b is the longitudinal resistivity in the absence of externally applied magnetic fields. The circles are rescaled experimental results adapted from Ref.](image)
Fig. 2: Electron orbits and magnetconductivity of a one-winding CNS for different magnetic field directions. a The green and yellow regions indicate the portion of the CNS where the effective magnetic field felt by the electrons is positive and negative, respectively. The top panels schematically show the native three-dimensional description whereas the middle and bottom panels sketch the effective two-dimensional description with the characteristic electron trajectories in the weak and moderate field strength regime for different orientations. b, c \(\sigma_t \) (\(\sigma_{||} \)) denotes the conductivity across (along) the tube axis, with \(\sigma_b \) the conductivity of a bulk 2D channel in the absence of magnetic fields. The triangles (circles) are the theoretical results for a one-winding CNS with mean free path \(l/W = 10 \) subject to a field in the \(\theta = 0 \) (\(\theta = \pi/2 \)) direction.

Fig. 3: Classical magnetoresistance of a one-winding CNS. MR as a function of the magnetic field strength \(B \) measured by the ratio between the CNS radius \(R_{\text{CNS}} \) and the characteristic cyclotron radius \(R_{\text{cycl}} \). \(\rho_b \) is the longitudinal resistivity of a bulk 2D channel in zero magnetic field. The triangles are the result for a magnetic field direction \(\theta = 0 \) while the circles are for \(\theta = \pi/2 \). The mean free path has been set to \(l/W = 10 \) and \(l/W = 1 \) in a and b respectively.
resembles the MR in the absence of boundary scattering (c.f. Fig. 1) but acquires a strong directional dependence independent of the ratio l/W. As long as the boundary scattering is completely diffusive, the directional dependence comes entirely from the aforementioned proliferation of snake orbits, and therefore the AMR in both cases in Fig. 3 reaches a giant value ≈ 80%.

Funding: "Future and Emerging Technologies (FET) programme within the Seventh Framework Programme for Research of the European Commission under FET-Open grant number: 618083 (CNTQC)."
Chemical Gating of a Weak Topological Insulator: Bi$_{14}$Rh$_3$I$_9$

M. P. Ghimire and M. Richter

Abstract: The compound Bi$_{14}$Rh$_3$I$_9$ has been suggested as a weak three-dimensional topological insulator on the basis of angle-resolved photoemission and scanning-tunneling experiments in combination with density functional (DF) calculations [1, 2]. These methods unanimously support the topological character of the headline compound, but a compelling confirmation could only be obtained by dedicated transport experiments. The latter, however, are biased by an intrinsic n-doping of the material’s surface: Electronic reconstruction of the polar surface shifts the topological gap below the Fermi energy [3], which would also prevent any future device application. Here, we report the results of DF calculations for chemically gated and for counter-doped surfaces of Bi$_{14}$Rh$_3$I$_9$. We demonstrate that both methods can be used to compensate the surface polarity without closing the electronic gap [4].

Introduction

Topological insulators (TIs) have recently attracted attention due to their massless Dirac-cone-like surface states protected by time-reversal symmetry (TRS). In a nutshell, TIs are characterized by these gapless surface states and a bulk energy gap. Three-dimensional (3D) TIs are called strong or weak based on four Z_2 invariants ($\nu_0, \nu_1, \nu_2, \nu_3$). If $\nu_0 = 1$, the material is a strong TI; if $\nu_0 = 0$ and any of the indices (ν_1, ν_2, ν_3) is equal to one, it is a weak TI. In the former case, including the well-known compounds Bi$_2$Se$_3$ and Bi$_2$Te$_3$, the TRS-protected surface states are present on all facets, while in the latter case, such surface states are present only on certain facets. Their peculiar properties bear the potential for novel types of information processing [5].

Weak 3D TIs suggested hitherto are usually hosted by layered crystal structures. The strength of the related interlayer coupling influences their bulk band structure: (i) In Bi$_2$TeI with strong interlayer coupling, this coupling is essential for the formation of the weak 3D TI state [6]; (ii) a weak interlayer coupling, however, results in a quasi two-dimensional (2D) band structure. This situation is found, among others, in Bi$_{14}$Rh$_3$I$_9$ [1, 2]. Weak 3D TIs of the second kind may allow to produce 2D TI structures that are expected to show the quantum spin-Hall (QSH) effect. This can be achieved by cleaving off thin layers from the bulk 3D TI as an alternative way to the fabrication of quantum wells [7]. Indeed, a single, charge-compensated layer of Bi$_{14}$Rh$_3$I$_9$ was predicted to be a 2D TI in a recent calculation [8].
The recently synthesized title compound was characterized as a layered ionic structure with alternating cationic [(Bi$_4$Rh$_3$I)$_2]^+$ and anionic [Bi$_2$I$_8$]$^{2-}$ layers, as shown in Fig. 1. DF calculations for this material found ($\nu_0; \nu_1, \nu_2, \nu_3$) = (0; 0, 0, 1). Further, the electronic band structure grossly agreed with angle-resolved photoemission spectra (ARPES) obtained on single crystals. On this basis, Bi$_{14}$Rh$_3$I$_9$ was claimed to be a weak TI [1]. Subsequently, this hypothesis was strengthened by scanning tunneling microscopy (STM) experiments [2]. By STM topography, the investigated [001] surface was found to exhibit areas with both types of layers. Clear signatures of one-dimensional (1D) states were observed in the band gap only at step edges of cationic surface layers. However, the related surface-layer gap was found 0.25 eV below the Fermi level (E_F) [2]. The [(Bi$_4$Rh$_3$I)$_2]^+$ layer carrying the edge states was observed to be structurally intact. The [Bi$_2$I$_8$]$^{2-}$ layer, however, contained holes that were attributed to the evaporation of iodine atoms during cleavage. Such a chemical reconstruction is one possibility [9] to compensate the obvious surface polarity of the system. DF calculations confirmed the observed down-shift of the topologically nontrivial band gap at the cationic [001] surface [3]. This is a clear sign of an electronic reconstruction as a second possibility [9] to compensate surface polarity.

A confirmation of the weak 3D TI state of Bi$_{14}$Rh$_3$I$_9$ would require to observe the QSH effect on the mentioned 1D edge states [10]. However, related transport experiments only make sense if the observed intrinsic doping is compensated by reasonable means, and thus, the topological gap with the edge states is shifted to E_F. There are several possible ways to compensate the surface polarity:

(i) physical gating by preparation of a dielectric gate structure and applying the electric field effect;
(ii) chemical gating by deposition of an oxidizing agent; or
(iii) counterdoping of the surface layer.

Here, we report results of investigations into the two latter possibilities by means of DF calculations. In particular, we study the effects of Iodine deposition as a sparse overlayer and of counter-doping by exchanging surface layer Bi atoms by Sn. The results are expected to provide suggestions for the preparation of forthcoming transport experiments, which are required to confirm the topological state of Bi$_{14}$Rh$_3$I$_9$ or similar systems.

Method

All DF calculations were done with the full-potential local-orbital (FPLO) code developed at IFW Dresden [11]. The self-consistent calculations were carried out in the four-component Dirac mode. This effort is necessary because the involved elements have a sizable spin-orbit coupling, which is responsible for opening the band gap. In order to simulate the [001] surface of a bulk sample, we considered a series of slabs with thickness varying from 1.25 to 3.75 nm, i.e., from one to three structural layers. The considered layer stacks have the same lateral cell dimensions as the experimental bulk structure [1], and equivalent atomic positions.

In Ref. [4], we considered chemical modifications on both cationic and anionic surfaces. First, the experimentally observed desorption of Iodine from the anionic (spacer) layer was modeled, where about two Iodine atoms per surface elementary cell are removed during cleavage [2,3]. Second, adsorption of a sparse Iodine layer on top of the cationic (2D TI) surface was investigated for the sake of tuning E_F. Third, we investigated the effect of surface doping by replacing part of the Bi atoms in the outermost atomic layer of the 2D TI surface by Sn. Details of the second type of modification are presented in the following section, while the summary mentions results of the third type as well.
Chemical gating

With the aim to compensate the surface charge and to move the surface gap with the topological edge states toward E_F, we generate a sparse layer of 1 – 3 Iodine atoms per surface unit cell (SUC) on top of the 2D TI surface. This concentration, about 0.08 – 0.25 monolayers, is similar to the concentration of Copper atoms that were recently used in chemical gating of the strong 3D TI Bi$_2$Se$_3$ \cite{12}. The calculated adsorption energy gain amounts to 1.7 eV for the first Iodine atom per SUC, 1.6 eV for the second, and 1.4 eV for the third one, if deposition of atomized Iodine is assumed. These numbers have to be reduced by 1.0 eV for the case of molecular Iodine deposition.

The related density of states (DOS) contributions of the 2D TI surface are shown in Fig. 2 for the simplest case of one structural layer. For the lowest concentration of one Iodine atom per SUC, E_F is shifted downward in comparison to the pristine case (not shown), indicating a reduction of electron-type bulk carriers, but stays within the conduction band (Fig. 2a). Next, for two Iodine atoms per SUC, E_F moves to the bottom of the conduction band. The calculated surface band gap of 0.07 eV (Fig. 2b) is smaller than the bulk gap, but transport experiments would be feasible. Further, if three Iodine atoms per SUC are deposited, E_F shifts into the valence band and a crossover from electron-type to hole type behavior occurs (Fig. 2c). These findings confirm the naive expectation that the formal surface charge of +2 can be compensated by two Iodine atoms. In the following, we will restrict our investigation to this adsorbant concentration.

Fig. 2: (from Ref. \[4\]): Layer-resolved density of states (DOS) of the 2D TI surface layer (Bi$_4$Rh)$_3$I$_{1+n}$ for deposition of $n = 1$ (a), $n = 2$ (b), and $n = 3$ (c) Iodine atoms per surface unit cell (SUC) on top of the 2D TI surface. The spacer surface is chemically reconstructed by removing two Iodine atoms per SUC as observed in experiment \[2\].

Fig. 3: (from Ref. \[4\]): Layer-resolved density of states (DOS) of 2D TI surface layers (Bi$_4$Rh)$_3$I$_3$ (a,c,e) and spacer surface layers Bi$_2$I$_6$ (b,d,f) for one (a,b), two (c,d), and three (e,f) structural layers with two Iodine atoms per surface unit cell (SUC) deposited on top of the 2D TI surface. The spacer surface is chemically reconstructed by removing two Iodine atoms per SUC as observed in experiment \[2\].

By comparison with the data of the thicker slabs it becomes obvious that this band originates from hybridization with spacer surface states being present at the same energy for all considered slab thicknesses, Fig. 3(b,d,f). The integrated weight of that band, projected to the 2D TI surface, amounts to 0.82 (0.05, 0.0034) electrons for slabs with one (two, three) structural layers. With increasing slab thickness, the interaction between the two surfaces and the related in-gap states at the 2D TI surface becomes weak and finally negligible for slab thickness larger than 2.5 nm. This means that ultra-thin films, in particular those with only one structural layer, may not be advantageous for the demonstration of the QSH effect in Bi_{14}Rh_{3}I_{9} due to possible narrowing of the gap by interaction with the opposite surface. Rather, films with a thickness larger than 2.5 nm may serve the goal if their surface is doped with Iodine or other oxidizing agents in an appropriate concentration. We suggest that the concentration could be naturally stabilized by a self-limited adsorption process, as overdoping might be thermodynamically unstable. This idea is supported by the calculated adsorption energy gain, which is considerably reduced with growing concentration of adsorbed Iodine. A fine-tuning of the concentration should be possible by the substrate temperature.

Summary

We have demonstrated that chemical gating can compensate the intrinsic n-doping at the surface of Bi_{14}Rh_{3}I_{9}, a suggested weak 3D topological insulator. By deposition of Iodine adatoms in an appropriate concentration or by partial exchange of surface Bismuth atoms by Tin, the topological gap is shifted to the Fermi level. While the former method might be easier implemented for a proof-of-principle experiment, the latter might be more robust for potential applications. Importantly, the gap is not closed upon chemical gating. As the applied local density approximation usually underestimates the gap size, this statement should be robust. Thus, the gated material will be suitable for transport experiments with the particular aim to confirm its topological character. We further find that the gap size grows with the thickness of the material. Therefore, no improvement of transport-related properties is expected upon extreme reduction of the sample thickness to one structural layer (1.25 nm).

Funding: Georg Forster Research Fellowship of the Alexander von Humboldt Foundation

Cooperation: TU Dresden, Germany; RWTH Aachen, Germany.
Research Area 4

Surface Acoustic Waves: concepts, materials and applications

Abstract: Besides fundamental investigations on the dynamic behavior of polar dielectrics our main research was devoted to the application-oriented fields of micro-acoustics. Highlighted topics comprise the utilization of surface acoustic waves (SAW) in the two growing branches of next generation SAW devices, namely acoustofluidic devices and wireless, self-sufficient sensors for harsh environments. For the first branch, the implementation of SAW actuators in advanced fluidic setups was investigated, e.g. for the controlled generation of aerosols by compact and mass-producible devices and regarding the exploitation of SAW electric fields to enhance streaming in microfluidic channels of lab-on-a-chip systems. For the second branch, we investigated two of the most important aspects for high temperature sensors, i.e. the establishment of novel electrode metallization systems with increased temperature capability as well as the precise microacoustic characterization of promising piezoelectric crystal materials.

Compact SAW aerosol generator

Surface acoustic wave (SAW) aerosol generators hold substantial promise for therapeutic and industrial applications, including medical inhalators, particle and film synthesis, olfactory displays and mass spectrometry. In previous studies, the aerosol generation from different fluids including such with high viscosity [1] and issues of power efficiency in SAW devices were investigated [2]. Furthermore, a new application in the field of aerosol based film deposition [3] was demonstrated in the IFW Dresden. Based on extensive fundamental and applied material research efforts in combination with technology development, a compact SAW aerosol generator, mass-producible by highly accurate standard techniques and on-chip integrated fluid supply, was developed [4]. This setup was employed to investigate relevant influences on the acoustofluidic interaction, including the local acoustic wave field, the electric load power, the fluid flow rate and the fluid supply position.

In SAW atomization, aerosol droplets originate from a fluid film stabilized by the acoustofluidic interaction on the chip surface. The driving force is a balance between acoustic radiation pressure and capillary stress, leading to film shaping based on the standing acoustic wave field, i.e. the lateral distribution of the SAW amplitude. Therefore, the acoustic wave field and the geometrical boundary conditions of the fluid supply are crucial for the device operation, defining the fluid film extension, the transient device behavior and the aerosol generation. Based on our studies, criteria for the design of ideal SAW atomization chips were formulated. With accordingly improved experimental conditions, a stable atomization was achieved in a broad range of power and flowrate combinations, different atomization regimes were identified, and the possibility of droplet size distribution tailoring was demonstrated (Fig. 1).

Fig. 1: a) Compact SAW aerosol generator during Ethanol atomization (140 μl/min), b) Atomization regimes observed for a 90 μm SAW chip and water with improved fluid supply position
Depending on the intended task, the future use of SAW aerosol generators based on disposable chips or chips with long lifetime is possible. Additionally, the setup is compatible to the future integration together with other microfluidic components, miniaturized fluid reservoirs / pumps and intelligent electronics for more complex signaling and analysis.

SAW electric field effect on acoustic streaming

When studying the fundamentals of acoustic streaming, one commonly takes into account only the force related to the high-frequency acoustic field in the liquid as a second-order effect. However, in SAW-driven microfluidic devices, the initial wave propagates along the surface of a strong piezoelectric substrate, typically LiNbO₃. Hence, the SAW induces in the liquid not only an acoustic field, but also an electric field. The latter polarizes the liquid and, correspondingly, exerts on it an instantaneous force with quadratic dependence on the electric field. As a result, a time-independent non-conservative force appears which is able to set in motion the liquid in a closed channel. Our investigations reveal that the ‘electric’ contribution due to the electric field accompanying the SAW can be comparable to, or even more significant than, the ‘mechanical’ contribution due to the acoustic field which is generated in the liquid by the SAW [5]. An example is depicted in Fig. 2.

![Fig. 2: Absolute values of the streaming velocity \(v_{st}\) in pure water; (a) the effect of combined ‘electric’ force and ‘mechanical’ force; (b) only the mechanical force is taken into account. The acoustic streaming is activated by the leaky SAW propagating on 64°Y-rotated LiNbO₃. The channel x-z cross section is 100 x 100 μm², the leaky SAW wavelength is 100 μm.](image)

The electric force can be significant only at distances from the channel bottom not exceeding half wavelength, in contrast to the mechanical force acting over the whole channel. Therefore, the electric field effect weakens with increasing the channel height since the relative volume of the channel space where the electric force drives the acoustic streaming reduces. The frequency dependence of the relative contribution of these two forces is controlled by the frequency dependence of the dielectric loss in the liquid. The relative contribution of the electric field decreases with increasing the liquid viscosity.

High temperature SAW device electrode metallization

Another current research topic is the development of wireless temperature sensor devices for high temperature range above 400 °C based on the SAW operation principle. To realize such devices, high demands are put on the high temperature stability of the piezoelectric substrate, the metallization for the interdigital transducers as well as of the...
In 2017, a preparation routine for the deposition of Pt antennae on Al₂O₃ high temperature ceramics was developed using a combination of electron beam evaporation of a 100 nm Pt seed layer and subsequent electrochemical deposition of a thicker Pt layer, respectively, to reach a total Pt film thickness of about 1 μm [6]. A second key aspect concerned the optimization of the cleaning procedure for both, the ceramic and the piezoelectric substrates prior to the film deposition since any contamination on the substrate surface might deteriorate the adhesion of the grown film. For Ca₃Ta₃Ga₃Si₂O₁₄ (CTGS), a two-step cleaning procedure combining a SC-1 cleaning at a reduced temperature of 30°C and a subsequent UV-ozone cleaning prior to deposition of the metallization resulted in lowest residual contamination [7].

In one of our most promising metallizations, RuAl, a high-temperature treatment at above 600°C leads to an oxidation of Al to Al₂O₃ at the sample surface even under high vacuum conditions and to a chemical reaction with the CTGS substrate. The latter is successfully suppressed by introducing a 10 nm SiO₂ barrier layer at the interface [8]. The lack of Al due to aluminum oxidation at the surface was tried to be countered by increasing the nominal Al content in the films. The study of a wide range of film composition (series of Ru₁₀₀₋ₓAlₓ, x = 50, 55, 60, 67) showed that after heat treatment the films are more homogeneous (Fig. 3) but the RuAl phase formation is reduced [9]. However, extended layers of this material are stable up to 900°C under high vacuum and up to 600°C in air, respectively.

Fig. 3: Cross section images of RuAl thin films with various compositions after annealing for 10 h at 800°C under high vacuum and at 600 and 800°C in air.

High precision microacoustic material data set for CTGS single crystal

Since the beginning of using piezoelectric single crystals for highly-precise microacoustic components rigorous knowledge of material constant (MC) sets was an indispensable requirement. The sets have to be both accurate and complete. Accuracy is important for acceptable agreement between device simulation and experimental reality, completeness preferentially plays a role for finding out figure-of-merit issues for optimum practical use of crystals. The present material under study is CTGS. It belongs to the point group 32, i.e., it has 10 electromechanical MC’s, in addition to the mass density. The aim of our work was to develop calculation ways of accuracies and to use this knowledge for getting optimum combinations of SAW experiments for the best MC extraction.
On the base of the least squares method which is arranged to our problem of fitting theoretical to experimental values of crystal orientation dependent SAW phase velocity the surroundings of the minimum sum (MSS) of velocity deviation squares has been analyzed, similarly to [10]. This was done by forming a ‘sensitivity matrix’ (or Jacobian matrix: derivatives of each considered velocity w.r.t. each searched MC) based on a MC set found in first approximation. Figures 4a and 4b depict examples of such matrices demonstrating quite different sensitivity dependencies on orientation which is an important condition for successful MC extraction. The subsequent evaluation of the quadratic dependence of MSS on all MC’s enables to obtain the full set of MC accuracies.

We have demonstrated that angular dependent measurements of SAW velocities combining samples with different surface orientations, e.g. on Y-cut, 45°rotated Y-cut, 135°rotated Y-cut, and X-cut result in a distinctly more accurate set of MC’s with uncertainties up to 2 orders smaller compared to experiments on samples with only one surface orientation (Y-cut) [11].

Fig. 4: Sensitivity of SAW velocity in CTGS w.r.t. the considered material constant as a function of 2nd and 3rd Euler angle (1st Euler angle: 0°); a) elastic constant c_{14}, b) piezoelectric constant e_{31}.

Funding: BMBF InnoProfile-Transfer (03IPT610Y HoBelAB); Deutsche Forschungsgemeinschaft (SCHM 2365/14-1, SO 1085/2-1); DAAD PPP Australia, IFW Excellence Program; Creavac, SAW Components Dresden, Vectron International

Cooperation: TU Dresden; TU Clausthal, Goslar; Fraunhofer IWS Dresden; Ioffe Physical Technical Institute RAS, St. Petersburg, Russia; Institute of Crystallography RAS, Moscow, Russia; Monash University Melbourne, Australia; Singapore University of Technology and Design SUTD, Singapore

Industry: Belektromik; Creavac; Lumicks, Netherlands; InnoXacs; SAW Components Dresden; Vectron International
Materials for Biomedical Applications

Abstract: Metastable Ti alloys are new materials of load-bearing implants for hard tissue support. Suitable mechanical biofunctionality demands much lower stiffness than present clinical implants combined with high strength, fatigue and wear resistance, as well as excellent biocompatibility. Alloys based on the metastable Ti-Nb system are particularly promising: Selecting composition and thermomechanical processing paths for controlled adjustment of microstructural parameters leads to phase configurations which yield outstanding mechanical properties. Activation of athermal and isothermal phase transformations through recently uncovered precipitation pathways opens new microstructural design approaches. Furthermore, \(\alpha'' \) martensite exhibits some of the largest thermal expansion rates ever reported for solid crystalline metals (giant thermal expansion). For cast \(\beta \)-type Ti-40Nb alloys recrystallization and cold rolling routes were developed resulting in significant tensile strength increase while maintaining the Young’s modulus low (\(\sim 60 \) GPa). Alternatively, powder metallurgical processing can generate nanostructured states with remarkable strength. For improved surface bioactivity of \(\beta \)-type Ti-Nb alloys anodization treatments were successfully developed to grow oxide layers with characteristic morphologies at the nano- and microscale. From those alloys osteosynthesis plates were produced according to industrial standards.

Phase formation and unusual thermal behaviour in the metastable Ti-Nb system

In collaboration with a research team from University of Ioannina (Greece) a fundamental experimental and theoretical study concerning the formation of phases in the metastable Ti-Nb system, their crystallographic structure and electronic properties was conducted, aiming to enlighten the electronic origins of the \(\beta \)-phase stability. Both quantum-mechanical calculations and X-ray diffraction found several structural phases depending on the Nb concentration [1]. Fig. 1 shows X-ray diffraction patterns of cast and homogenized Ti-xNb (x \(\leq \) 29.3 at.%; 45.8 wt.%) alloy samples. The main structural constituent in these alloys is either \(\alpha'' \), \(\alpha'' \) or \(\beta \). In all martensitic alloys minor amounts of \(\omega \) and/or retained \(\beta \) are present. In Nb-lean alloys containing less than 9 at.% Nb mainly hexagonal martensite \(\alpha' \) was found. Alloys with Nb contents from 9 at.% to 20.4 at.% consist primarily of the orthorhombic martensite \(\alpha'' \). Besides \(\alpha'' \), alloys containing 22.4 at.% Nb and more contained increasing amounts of retained \(\beta \) that did not transform into martensite by quenching. For Nb contents higher than 24.9 at.% (38 wt.%) no secondary phases were detected besides the \(\beta \)-phase. Since the discovery of shape memory (SM) effects in Ti–Nb this system serves as a prototype to study SM in Ni-free Ti alloys. The transformation pathways triggered by heating of \(\alpha'' \) martensite depend on the Nb content [2]. Calorimetry (DSC) analysis at a constant heating rate was conducted for homogenized Ti–xNb alloys.

Reversion of \(\alpha'' \) martensite followed by partial \(\omega \) iso precipitation occurs for \(x \geq 28.5 \). In contrast, for \(x \leq 21 \) \(\alpha'' \) decomposes directly into \(\alpha + \beta \) phase mixture. Formation of \(\omega \) iso starts during the martensitic reversion of \(\alpha'' \) for \(x = 28.5 \), whereas more than 100°C above the austenite finish temperature \(A_f \) for \(x = 36 \). During further heating \(\omega \) iso transforms back to \(\beta \). For \(x = 28.5 \) this reaction overlaps and is followed by \(\alpha \) precipitation.

Fig. 1: X-ray diffraction patterns of cast and homogenized Ti-Nb alloys (at.%) [1].
Variable-temperature synchrotron X-ray diffraction (SXRD) was employed to track these transformations in situ for the same alloys and new phases were detected including α, β, ω_{iso}, a Nb-depleted α'' (α''_{lean}) and a thermally formed α''_{iso} [2]. Fig. 2 shows exemplarily the pattern evolution during heating of Ti-36Nb up to 760°C confirming the formation of ω_{iso} and α. Using the diffractograms the lattice parameters for all phases were determined including the three types of α'' (martensite, $\alpha''_{\text{lean}}, \alpha''_{\text{iso}}$). The lattice parameters of α'' martensite are strongly affected by the Nb content. Nb-lean α'' is structurally closer to hcp α' whereas Nb-rich α'' is more similar to bcc β. The highlight of this study was the demonstration that α'' martensite displays both one of the largest positive and one of the largest negative linear thermal expansion coefficients α_L ever reported for solid crystalline metallic systems [2]. A remarkable anisotropy of the thermal expansion of α'' martensite for Ti–36Nb was observed: While the $a_{\alpha''}$ and $c_{\alpha''}$ spacings expand at a rate of $163.9 \times 10^{-6} \, ^\circ\text{C}^{-1}$ and $24.4 \times 10^{-6} \, ^\circ\text{C}^{-1}$, respectively, the $b_{\alpha''}$ spacing contracts by $-95.1 \times 10^{-6} \, ^\circ\text{C}^{-1}$ between 50°C and 210°C. Fig. 3 illustrates this schematically. Typical values for α_L for engineering metals and alloys are positive and range between 0 – 40 $\times 10^{-6} \, ^\circ\text{C}^{-1}$. Expansion rates comparable to or larger than those for Ti–36Nb are only found for members of other material classes. In case of α'' martensite in Ti–Nb, the expansion and contraction along the unit cell edges partially compensate each other leading to a volumetric expansion rate α_V between $24.7 \times 10^{-6} \, ^\circ\text{C}^{-1}$ and $91.0 \times 10^{-6} \, ^\circ\text{C}^{-1}$.

Thermomechanical processing of β-type Ti-Nb alloys

For β-type Ti-40Nb (wt.%) alloys thermomechanical processing routines were developed to evaluate the effectiveness of different hardening strategies for the improvement of their mechanical biofunctionality. The aim was to significantly increase the yield and tensile strength in comparison to the cast and homogenized state (H) while maintaining a very low Young’s modulus of ≤ 60 GPa. Fig. 4 shows tensile test curves of Ti-40Nb samples after different processing treatments including warm and cold rolling as well as annealing steps. To exploit grain boundary hardening, a grain refinement of the β-phase was anticipated by a recrystallization treatment (R) and a significant drop of the grain size from 230 to 26 μm was achieved. The ultimate tensile strength was increased by 3% to 495 MPa, while the Young’s modulus remained unchanged. Cold-rolling (CR) with 36% thickness reduction was applied after recrystallization and led to a pronounced work hardening which caused an increase of the ultimate tensile strength by about 32% to 650 MPa. The precipitation of small amounts of α-phase obtained by aging at 450°C (A) resulted in an increase of the ultimate tensile strength to 674 MPa. However, the Young’s modulus also increased to 68 GPa. Therefore, the CR route was identified as the most promising one [3]. Those hardening strategies were found to be also transferrable to
In-containing β-type Ti-Nb alloys with further reduced Young’s modulus and indium effects on the deformation mechanisms, in particular on stress-induced martensite formation were discussed [4]. Alternatively, powder metallurgical processing of β-phase Ti-Nb alloys was successfully applied [5]. Hot compaction of gas-atomized and additionally intensively milled Ti-45Nb powder yielded fully dense samples with nanograin microstructure. Those exhibit a very high compressive yield strength of 940 MPa and a low Young’s modulus of 70 GPa. An efficient new approach to produce ultrafine-grained β-type Ti-Nb powder by reactive milling of the elements in hydrogen atmosphere was developed [6].

Surface engineering of Ti alloy surfaces for hard tissue implant application

For β-type Ti-40Nb alloys different anodization techniques were applied to grow oxide layers with characteristic morphologies at the nano- and microscale [7]. Anodization in fluoride-containing solutions generates self-organized oxide nanotube layers whereby the nanotubes have higher aspect ratios than those grown on cp2-Ti. The electrolyte composition has a significant influence on the resulting oxide morphology. The transfer of such anodization to Ti-Nb-Zr-Si metallic glass surfaces was demonstrated yielding double-wall oxide nanotubes with incorporation of all alloying constituents [8]. Those tubular structures are targeted as containers for drug-delivery systems. Plasma electrolytic oxidation of Ti-40Nb in strongly alkaline solution yields a two-layer oxide structure with a thin compact inner layer and a much thicker outer layer with micropores and microchannels, as shown in Fig. 5. The latter is due to spark discharging.

Fig. 4: Tensile test curves of Ti-40Nb (wt.%) after different thermomechanical treatments: (H) homogenized, (R) recrystallized, (CR) cold rolled, (A) aged [3].

Fig. 5: Surface state of Ti-40Nb (wt.%) after plasma electrolytic oxidation (PEO): SEM top surface and cross section and GDOES depth profile [7].
Research Area 4 TOWARDS PRODUCTS

and arcing during the severe anodization process. In comparison to oxide growth on cp-Ti, on the β-phase alloy thickness growth is much more enhanced and slightly larger dimensions of micropores are detected. The oxides are crystalline mainly with rutile structure. In result of GD-OES depth profile analysis of treated alloy surfaces as shown in Fig. 5, these were identified as mixed oxides (Ti₆Nbx₆₋x)O₂. Inductively coupled RF oxygen plasma anodization was done in cooperation with a team at JLU Gießen. It causes the formation of microstructured oxides on the Ti-40Nb surface. With increasing processing temperature a transition from random structured to patterned oxides was observed which is opposite to the trend for cp2-Ti. For all three techniques the oxide layer growth on the Ti-40Nb alloy follows the principal mechanisms that are established for Ti. Nb species are always involved in the oxidation processes which causes enhanced layer thickness growth, morphology changes and mixed oxides. All obtained oxide types are promising as coatings of bone implants for improved bioactivity.

In a pilot study, from thermomechanically processed β-type Ti-40Nb sheets osteosynthesis plates were manufactured by an industrial standard procedure developed for clinical Ti which comprises laser cutting, deburring and vibration grinding and surface anodization oxidation. A typical plate is shown in Fig. 6. In collaboration with a team from TU Dresden the fatigue behaviour of those plates and tensile test samples was analysed and superimposed influences of the surface state, the sample geometry and the microstructure were discussed [9].

Funding: DFG SFB/Transregio 79, DFG LI 2536/1, DFG SPP 1594 GE1106/11, EU ITN BioTiNet grant agreement 264635, EU ETN SELECTA grant agreement 642642

Cooperation: TU Dresden (G), TU Bergakademie Freiberg (G), Leibniz IPF Dresden (G), Justus-Liebig-Universität Giessen (G), University of Illinois at Urbana-Champaign (USA), University of Ioannina (Greece), Montanuniversität Leoben (Austria), University of Vienna (Austria), University of Pardubice (Czech Republic)
Ultra-high-strength tool steels prepared by selective laser melting and casting – a comparative study

Abstract: Selective laser melting is an additive manufacturing process, which enables industrial scale production of complex shaped metal parts. Moreover, high cooling rates are realized in the SLM process leading to highly refined microstructure. This report shows the influence of the SLM process on a FeCrMoVC alloy regarding microstructure, behavior under compressive load, and wear resistance. A comparison is drawn with the cast state of the FeCrMoVC alloy and with commercial 1.2379 cold work tool steel (X153CrMoV12). The results demonstrate that the SLM process is beneficial to the investigated properties. SLM samples achieved a hardness of 65 HRC and a compression strength of 5300 MPa. Furthermore, the wear resistance of SLM processed samples is 65% higher in comparison to cast FeCrMoVC and 25% higher compared to that of commercial 1.2379. The increased wear resistance of SLM samples is caused by the successful prevention of carbide breakouts under wear load and the increased hardness.

General aspects

Tool steels are known for their marked wear resistance as well as hardness, strength, and adequate toughness. By an appropriate alloy design and manufacturing process, the microstructure and related properties of the tool steels can be tailored adjusted within a large spread. Thereby, as-cast steels may show an enhanced wear resistance and strength compared to heat-treated steels resulting in a longer tool life [1]. Though, the impact toughness of high-alloyed cast tool steels is in general lower compared to conventionally produced steels, due to the coarse carbide network along the primary grain boundaries [2]. However, by an appropriate grain refinement an increase in toughness and strength can be obtained.

Selective laser melting presents an additive manufacturing technology enabling a significant refinement of the grains and microstructural constituents due to very high solidification rates within the process. As shown in previous work, this leads to an increase of compression strength and hardness [3].

Various authors report a significantly different mechanical and wear behavior of SLM fabricated samples compared to their cast equivalents. For aluminum alloys [4,5], titanium alloys [6,7], CoCr alloys [8,9], and tool steels [10] an increase of the wear resistance of SLM produced parts could be observed. Although, there is no general increase of wear resistance with increasing material strength properties or hardness [11]. Further studies are necessary to fully understand the influence of the SLM process on the mechanical and wear properties.

Microstructure and mechanical behaviour of Fe\textsubscript{85}Cr\textsubscript{4}Mo\textsubscript{8}V\textsubscript{1}C\textsubscript{1}

In Fig. 1 SEM images of the deep etched microstructure of the investigated FeCrMoVC modifications and the reference material is presented. The arrangement of the carbides is exposed.

The cast sample of the FeCrMoVC alloy consists of martensite (71 wt.%), retained austenite (24%), as well as Mo-rich M\textsubscript{2}C (M=Mo, V, Cr) carbides (3 wt.%), and V-rich MC (M=V, Mo) carbides (2 wt.%) [13]. These complex carbides form a fine network-like structure as displayed in Fig. 1a. In Fig. 1b a SEM image of the reference steel (1.2379) is shown, which is composed of martensite (64 wt.%), retained austenite (3 wt.%), and dense isolated clusters of Cr\textsubscript{7}C\textsubscript{3} carbides (33 wt.%). The FeCrMoVC SLM sample consists of martensite (73 wt.%), retained austenite (15 wt.%), carbides of the M\textsubscript{2}C type.
(M = Mo, V, Cr) (6 wt.%), and MC (M = V, Mo) (6 wt.%). The carbide network has a long drawn cell structure (Fig. 1c) and is orientated in building direction. In comparison to the cast sample, the carbides are refined and homogeneously distributed. The refinement is caused by the high cooling rates in the SLM process, which are around one thousand times higher than in the presented casting process [3,13].

A summary of the mechanical properties of the tested alloys can be found in Tab. 1. The cast FeCrMoVC has a hardness of about 60 HRC, resulting of the high martensite content as well as the M_{2}C and MC carbides. Moreover, the compression strength is around 3500 MPa combined with a fracture strain of 17%. In comparison, the 1.2379 shows a hardness of 61 HRC due to the higher martensite content and the much higher carbide content. Nevertheless, the difference of the average hardness is only 1 HRC despite the 33 wt. % Cr_{7}C_{3} carbides in the 1.2379 compared to 5 wt. % carbides in the cast sample. This is explained by the lower microhardness of the M_{2}C carbides compared to M_{2}C and MC carbides [14]. The compression strength of the 1.2379 is 3200 MPa, whereby the fracture strain amounts 24%. The higher average compression strength of the cast FeCrMoVC sample mainly results from the network-like structure of the carbides and the deformation induced transformation of retained austenite into martensite [12]. However, the network-like structure of the M_{2}C carbides in the cast sample provides fracture sites [2], which lead to a reduced fracture strain compared to the 1.2379 steel.

The SLM sample has a significantly increased hardness of 65 HRC compared to the cast sample, an increased compression strength of 5326 MPa, and a fracture strain of 15.6%. This can be explained by the refined microstructure of the SLM sample and the homogeneously dispersion of alloying elements and carbides leading to a Hall-Petch strengthening [3]. Furthermore, the carbide and martensite content is increased, which provides high hardness but causes embrittlement and, consequently, lowers the fracture strain.

The different wear behavior of the tool steel samples are reflected by the wear rate (Tab. 1). The SLM samples show a significantly higher wear resistance compared to the cast FeCrMoVC samples and the 1.2379 reference steel. Fig. 2 presents height mappings and SEM images of the wear surfaces. It is observable that with decreasing wear rate the roughness of the wear surface decreases. This is because of the decreasing depth

![Fig. 2: Height mappings and SEM images of the wear surfaces of cast FeCrMoVC (a, b), 1.2379 reference (c, d), and SLM processed FeCrMoVC (e, f) samples.](image-url)
of the scratches. The depth of the scratches is strongly influenced by the morphology and properties of the phase constituents of the tested materials. With increasing hardness of phases, a decreasing penetration depth of the abrasive SiC-particles of the grinding wheel was observed, leading to less material removal. Microcutting and microplopping are the underlying wear mechanisms and, amongst other things, depend on the hardness of the material [15]. However, bearing in mind the similar hardness of the cast samples and the 1.2379 further influences than the hardness need to be considered.

The SEM images of the wear surfaces reveal additional wear mechanisms. The type, shape, size, and volume fraction of the carbides play an important role in wear behavior. The M$_2$C and MC carbide types are reported to have high hardness and fracture toughness [14], leading to high wear resistance against softer abrasives, but they also tend to break out in larger areas [16]. Those breakouts can be observed in the cast sample in Fig. 3b. The Cr$_7$C$_3$ type carbides in the 1.2379 are softer than the M$_2$C and MC carbide types [14]. Consequently, they are cut by harder abrasives instead of breaking out [16] visible in Fig. 1d. This behavior and the higher carbide content is cause for the higher wear resistance of the 1.2379 compared to the cast FeCrMoVC sample.

The carbides in the SLM sample are of the same type as in the castings, but occur in higher volume fractions (M$_2$C and MC type). Nevertheless, no breakout areas have been found on the wear surface. Fig. 1c and Fig. 2f show the structure of the carbides in the SLM sample. They are highly refined and arranged in a continuous network structure compared to the carbides in the as cast sample (Fig. 1a, Fig. 2a). Consequently, they have a bigger surface and stronger bonding to the matrix, which prevents breakouts. The combination of a high matrix hardness, high carbide content, and homogeneously dispersed carbide phases, leads to a tailored microstructure and, therefore, to superior wear resistance of SLM processed FeCrMoVC alloy.

Tab. 1: Mechanical properties of SLM processed FeCrMoVC, cast FeCrMoVC, and 1.2379 reference sample.

<table>
<thead>
<tr>
<th></th>
<th>Hardness (HRC)</th>
<th>Wear rate (mm3/Nm)</th>
<th>Compression strength (MPa)</th>
<th>Fracture strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2379</td>
<td>61</td>
<td>0.06039</td>
<td>3190</td>
<td>24</td>
</tr>
<tr>
<td>Cast FeCrMoVC</td>
<td>59</td>
<td>0.08379</td>
<td>3536</td>
<td>17</td>
</tr>
<tr>
<td>SLM FeCrMoVC</td>
<td>65</td>
<td>0.04506</td>
<td>5326</td>
<td>16</td>
</tr>
</tbody>
</table>

Fig. 3: Application-oriented parts were manufactured.
Top: milling cutter with integrated cooling channels.
Bottom: drill with integrated cooling channels, after SLM process and after grinding, sharpening, and testing.
Conclusions

The investigated mechanical properties of SLM processed FeCrMoVC alloy benefit from the refinement of the microstructure resulting from the high cooling rates in the SLM process. In fact, the compression strength, hardness, and wear resistance are significantly increased compared to the cast state and 1.2379 reference steel. The reason is given by the enhanced hardness and the prevention of carbide breakouts, which appeared in the cast state.

Application-orientated parts have been built to show the potential of this technology (Fig. 3). A milling cutter with integrated cooling channels, as well as, a drill with integrated cooling channels was produced. The drill has been grinded and sharpened and was successfully tested. In conclusion, the SLM process is advantageous for the processing of high-strength FeCrMoVC tool steel.

[16] F. Bergman et al., Tribology Inter. 30(3) (1997) 183

Funding: Wehrwissenschaftliches Institut für Werk- und Betriebsstoffe (WIWeB), Erding

Cooperation: Wehrwissenschaftliches Institut für Werk- und Betriebsstoffe (WIWeB), Erding; Dep. Mechanical Engineering of the Research Technology of IFW re captions
Publications and invited talks 2017

Journal Papers

1) M.A. Abdulmalic, S. Weheabby, F.E. Meva, A. Aliabadi, V. Kataev, B. Buechner, F. Schleife, B. Kersting, T. Rueffer, Probing the magnetic superexchange couplings between terminal CuII ions in heterotrinuclear bis(oxamidato) type complexes, Beilstein Journal of Nanotechnology 8 (2017), S. 789-800.

4) C.E. Agrapidis, S.-L. Drechsler, J. van den Brink, S. Nishimoto, Crossover from an incommensurate singlet spiral state with a vanishingly small spin gap to a valence-bond solid state in dimerized frustrated ferromagnetic spin chains, Physical Review B 95 (2017) Nr. 22, S. 220404/1-5.

23) S. Bera, B. Sarac, S. Balakin, P. Ramasamy, M. Stoica, M. Calin, J. Eckert, Micro-patternning by thermoplastic forming of Ni-free Ti-based bulk metallic glasses, Materials and Design 120 (2017), S. 204-211.

34) S. Bera, B. Sarac, S. Balakin, P. Ramasamy, M. Stoica, M. Calin, J. Eckert, Micro-patternning by thermoplastic forming of Ni-free Ti-based bulk metallic glasses, Materials and Design 120 (2017), S. 204-211.

68) D.J. Collins, B.L. Khoo, Z. Ma, A. Winkler, R. Weser, H. Schmidt, J. Han, Y. Ai, Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming, Lab on a Chip 17 (2017) Nr. 10, S. 1769-1777.

69) D.J. Collins, B.L. Khoo, Z. Ma, A. Winkler, R. Weser, H. Schmidt, J. Han, A. Ye, Correction: Selective particle and cell capture in a continuous flow using micro-vortex acoustic streaming, Lab on a Chip 17 (2017) Nr. 10, S. 1843.

76) A.M. Diederichs, F. Thiel, U. Lienert, W. Pantleon, In-situ investigations of structural changes during cyclic loading by high resolution reciprocal space mapping, Procedia Structural Integrity 7 (2017), S. 268-274.

244) C. Mueller, I.T. Neckel, V. Engemaier, D. Pohl, W.H. Schreiner, D.H. Mosca, *Ni$_74$Mn$_{20}$Ga$_6$ alloys grown by molecular beam epitaxy on GaAs/AlAs/In$_{0.2}$Ga$_{0.8}$As (001)*, Thin Solid Films 638 (2017), S. 298-304.

266) S. Oswald, M. Hoffmann, M. Zier, *Peak position differences observed during XPS sputter depth profiling of the SEI on lithiated and delithiated carbon-based anode material for Li-ion batteries*, Applied Surface Science 401 (2017), S. 408-413.

297) R. Ray, S. Kumar, Switchable Multiple Spin States in the Kondo description of Doped Molecular Magnets, Scientific Reports 7 (2017), S. 22255/1-10.

Publications and invited talks 2017

334) S. Schimmel, Z. Sun, D. Baumann, D. Krylov, N. Samoylova, A. Popov, B. Buechner, C. Hess, Adsorption characteristics of Er3N@C(80) on W(110) and Au(111) studied via scanning tunneling microscopy and spectroscopy, Beilstein Journal of Nanotechnology 8 (2017), S. 1127-1134.

359) H. Sepehri-Amin, J. Thielisch, J. Fischbacher, T. Ohkubo, T. Schrefl, O. Gutfleisch, K. Hono, *Correlation of microchemistry of cell boundary phase and interface structure to the coercivity of $\text{Sm(Co}_{0.784}\text{Fe}_{0.100}\text{Cu}_{0.088}\text{Zr}_{0.028})_7\text{I}_9$ sintered magnets*, Acta Materialia 126 (2017), S. 1-10.

380) A. Surrey, K. Nielsch, B. Rellinghaus, Comments on „Evidence of the hydrogen release mechanism in bulk MgH2“, Scientific Reports 7 (2017), S. 44216/1-4.

381) A. Surrey, L. Schultz, B. Rellinghaus, Multislice simulations for in-situ HRTEM studies of nanostructured magnesium hydride at ambient hydrogen pressure, Ultramicroscopy 175 (2017), S. 111-115.

386) J. Torrens-Serra, P. Bruna, M. Stoica, J. Eckert, Glass-forming ability and microstructural evolution of [(Fe0.6Co0.4)0.75Si0.05B0.20]96-xNb4Mx metallic glasses studied by Moessbauer spectroscopy, Journal of Alloys and Compounds 704 (2017), S. 748-759.

H. Yasuoka, T. Kubo, K. Kitaev magnetism

Contributions to conferences proceedings and monographs

3) F. Ding, O.G. Schmidt, *Polarization Entangled Photons from Semiconductor Quantum Dots*, in: Quantum Dots for Quantum Information Technologies (Nano-Optics and Nanophotonics; Bd.3); print 978-3-319-56377-0; online 978-3-319-56378-7, S. 235-266 (2017).

Editorship

Invited talks

22) F. Ding, *An invitation from a semiconductor physicist: Bridging semiconductors and quantum optics*, Institute for Quantum Optics, Leibniz University Hannover, Hannover/ Germany, 10.5.17 (2017).

25) F. Ding, *Why I am optimistic about semiconductor entangled photons?*, Walter-Schottky Institute, TU Munich, Munich/ Germany, 8.5.17 (2017).

27) F. Ding, *Semiconductor entangled photon sources*, Faculty of Physics, University of Bremen, Bremen/ Germany, 20.4.17 (2017).
29) F. Ding, *Progress in semiconductor entangled photon sources*, Fudan University, Shanghai/ China, 17.7.17 (2017).
31) S.-L. Drechsler, *Constraints on the coupling strength to low-energy bosons in Fe based superconductors*, 14.06.2017, Lomonosov Moscow State University, Department of Chemistry, Moscow/ Russia, 14.6.17 (2017).

67) J. Han, N. Mattern, *Phase equilibria and structure investigation of metallic alloy systems by X-ray diffraction*, Modeling of multiscale metastable materials, Institute of Materials, Shanghai University, Shanghai/ China, 2.8.17 (2017).

72) C. Hess, *Boson-assisted Friedel oscillation resonance in LiFeAs: evidence for q~0 modes*, SFB-Kolloquium, Universität zu Koeln, Koeln/ Germany, 18.10.17 (2017).

94) M. Medina-Sanchez, *Miniaturized and ultrasensitive biosensors*, Symposium of Innovation and Technologic Development in Healthcare, ECCI University and Military Hospital, Bogota/ Colombia, 27.10.17 (2017).

95) M. Medina-Sanchez, *Microbots for biomedical applications*, Symposium of Innovation and Technologic Development in Healthcare, ECCI University and Military Hospital, Bogota/ Colombia, 26.10.17 (2017).

158) J. van den Brink, Josephson Currents Induced by the Witten Effect, Physics Colloquium, University of Cologne/ Germany, 3.5.17 (2017).

159) J. van den Brink, Iridates and RuCl3: From Heisenberg antiferromagnets to potential Kitaev spin-liquids, MSU-IFW-ILTPE workshop, Moscow/ Russia, 15.6.17 (2017).

167) A. Winkler, Applications for surface acoustic wave (SAW) devices and material-/technology related issues in their realization, Micro/Nanofluidic BioMEMS Group, Massachusetts Institute of Technology (MIT), Boston/ USA, 30.11.17 (2017).

Patents 2017

Issues of patents *(issue decision date)*

<table>
<thead>
<tr>
<th>Patent Number</th>
<th>Description</th>
<th>Inventors</th>
</tr>
</thead>
<tbody>
<tr>
<td>EP15732568.9</td>
<td>Batterieträger (02.08.2017)</td>
<td>Markus Herklotz, Jonas Weiß, Lars Giebeler, Michael Knapp</td>
</tr>
<tr>
<td>14/408,126</td>
<td>Verfahren zur kontrollierten Bewegung von motilen Zellen in flüssigen oder gasförmigen Medien (26.09.2017)</td>
<td>Veronika Magdanz, Samuel Sanchez Ordonez, Oliver G. Schmidt</td>
</tr>
<tr>
<td>DE 10 2011 006 963.1</td>
<td>Mehrspur-Unidirektionalwandler (08.05.2017)</td>
<td>Sergey Biryukov, Günter Martin, Bert Wall</td>
</tr>
<tr>
<td>DE 10 2011 007 700.6</td>
<td>Verbundwerkstoff und Verfahren zu seiner Herstellung (19.10.2017)</td>
<td>Uwe Gaitzsch, Claudia Hürrich, Martin Pötschke, Jan Romberg, Stefan Roth, Ludwig Schultz, Sandra Kaufmann-Weiß</td>
</tr>
<tr>
<td>DE 10 2012 213 839.0</td>
<td>Verfahren zur kontrollierten Bewegung von Objekten in flüssigen Medien (24.02.2017)</td>
<td>Robert Streubel, Denys Makarov, Oliver G. Schmidt, Larysa Baraban, Gianaurelio Cuniberti</td>
</tr>
</tbody>
</table>
Priority patent applications (priority date)

11623 DE Magnetokalorischer Wärmeübertrager mit anisotroper Wärmeleitfähigkeit und Verfahren zur Herstellung (03.02.2017)
Inventors: Maria Krautz, Markus Klose, Anja Waske, Martin Uhlemann

11604 DE Vorrichtung zur Steuerung und/oder Regelung der Strömung von Fluiden (12.05.2017)
Inventors: Anja Waske, Maria Krautz, David Werner, Samuel Grasemann

11713 DE Verfahren sowie Vorrichtung zur Filterung magnetischer Partikel (12.05.2017)
Inventors: Anja Waske, Stefanie Hartmann

11714 DE Kompakte Kondensatoren und Verfahren zu ihrer Herstellung (24.05.2017)
Inventor: Oliver G. Schmidt

11525 DE Aufgerollte magnetische Kondensatoren und Verfahren zu ihrer Herstellung (24.05.2017)
Inventors: Oliver G. Schmidt, Stefan Harazim, Shoichiro Suzuki

11526 DE Aufgerollte Energiespeicherbauelemente und Verfahren zu ihrer Herstellung (24.05.2017)
Inventor: Oliver G. Schmidt

11712 DE In situ-Verfahren und Vorrichtung zur Herstellung von Garnen aus Kohlenstoffnanotubes (12.06.2017)
Inventors: Vyacheslav Khavrus, Albrecht Leonhardt, Ralf Voigtländer, Bernd Büchner

11630 DE Brennstoffzelle (30.06.2017)
Inventor: Jörg König, Sebastian Burgmann

11626 DE Verfahren zur Herstellung omniphober Oberflächen (06.07.2017)
Inventors: Julia Linnemann, Jakob Sablowski, Simon Unz, Michael Beckmann, Lars Giebeler

11613 DE Dreidimensionale Mikro-Bauelemente und Verfahren zu ihrer Herstellung (22.08.2017)
Inventors: Daniil Karnaushenko, Dmitriy Karnaushenko, Oliver G. Schmidt

Inventors: Hagen Schmidt, Günter Martin

11715 DE Impulsauflösendes Photoelektronenspektrometer und Verfahren zur impulsauf lösenden Photoelektronenspektroskopie (15.12.2017)
Inventor: Sergey Borisenko
Graduation of young researchers 2017

Habilitation

Christian Hess Spin-heat transport of low-dimensional quantum magnets, TU Dresden
Axel Lubk Holography and Tomography with Electrons – Froam Quantum States to Three-Dimensional Fields and Back, TU Dresden

PhD Theses

Florian Bittner Untersuchung der Wechselwirkung von Verarbeitung, Gefüge und Eigenschaften hartmagnetischer Mn-Al-Legierungen mit L10-Struktur, TU Dresden
Anja Bonatto Minella One-dimensional carbon nanostructures grown from permalloy catalyst nanoparticles, TU Dresden
Tilo Espenhahn Schaltbare Fahrwegkomponenten für supraleitende Magnetschwebbahnen, TU Dresden
Uwe Gräfe Investigation of the Superconducting and Magnetic Phase Diagram of Off-Stoichiometric LiFeAs, TU Dresden
Marcel Haft Synthese intermetallischer Nanostrukturen in Kohlenstoffnanoröhren, TU Dresden
Frank Kirtschig Topological k · p Hamiltonians and their applications to uniaxially strained Mercury telluride, TU Dresden
Anett Förster Epitaktische Ni-Mn-Ga-Co-Schichten für magnetokalorische Anwendungen, TU Dresden
Thomas Freudenberg Integration prästabilisierter Nanopartikel in lösungsbasierten supraleitenden YBa2Cu3O7-δ-Schichten, TU Dresden
Stephan Fuchs Elektronenspinresonanz an Iridaten in Doppelperowskistrukturen, TU Dresden
Katrin Junghans Clusterfullerensynthese mit Methan, TU Dresden
Dmitriy Karnaushenko Compact helical antenna for smart implant applications, TU Chemnitz
Konrad Kosiba Flash-Annealing of Cu-Zr-Al-based Bulk Metallic Glasses, TU Dresden
Pranab Kumar Nag Unusual electronic properties in LiFeAs probed by low temperature scanning tunneling microscopy and spectroscopy, TU Dresden
Xueyi Lu Architectural nanomembranes as cathode materials for Li-O2 Batteries, TU Chemnitz
Abbas Madani Titanium dioxide based microtubular cavities for on-chip integration, TU Chemnitz
Mahmoud Madian Fabrication and characterization of highly-ordered TiO2-CoO, CNTs@TiO2-CoO and TiO2-SnO2 nanotubes as novel anode materials in lithium ion batteries, TU Dresden
Miléna Martine Na-Sb-Sn-based negative electrode materials for room-temperature sodium cells for stationary Applications, TU Dresden
Michael Mietschke Zusammenhang von Gefüge und ferroelektrischen Eigenschaften texturierter PMT-PT-Dünnschichten, TU Dresden
Parthiban Ramasamy Soft Ferromagnetic bulk metallic glasses with enhanced mechanical properties, TU Dresden
Jinbo Pang Thermal deposition approaches for graphene growth over various substrates, TU Dresden
Florian Rückerl Photoemission Spectroscopy at Organic Semiconductor Systems, TU Dresden
Nataliya Samoylova Cluster-based redox activity in Endohedral Metallofullerenes: Electrochemical and EPR studies, TU Dresden
Benjamin Schleicher Herstellung und multivariable Beeinflussung epitaktischer Ni-Mn-Ga-Co-Schichten auf piezoelektrischen Substraten, TU Dresden
Xiaolei Sun Nanomembranes based on nickel oxide and germanium as anode materials for lithium-ion batteries, TU Chemnitz
Yannic Utz The Effect of In-Chain Impurities on 1D Antiferromagnets – An NMR Study on Doped Cuprate Spin Chains, TU Dresden
Lixia Xi High-temperature interactions of molten Ti-Al, Ni-Al and Ni-B alloys with TiB ceramic, TU Dresden
Diploma and Master Theses

Mirunalini Devarajulu: Local Photo-response Characteristics in Organic Nanosystems via Cs-AFM, TU Chemnitz
Kristina Ditte: Chemical derivatization of endohedral metallofullerene Y3N@C80 and its influence on luminescent properties, TU Dresden
Esther Fischer: Electron Energy-Loss Spectroscopy of High-Temperature Superconductors Bi-2212 and Bi-2223, TU Dresden
Christian Frach: Verformungseigenschaften mechanisch vorbelasteter CuZr-Basis-Gläser, TU Dresden
Hannes Funke: Quantum Confinement in Bi2Te3 Nanostructures, TU Dresden
Kevin Geishendorf: Annealing of YIG/Pt-Heterostructures for Spin Injection Experiments, TU Dresden
Lukas Graf: Transport properties of thin transition-metal dichalcogenide nanostructures
Yue Gu: Fabrication and Optimization of Organic Thin Film Transistors, TU Chemnitz
Georg Horn: Spinonischer Wärmevertransport in Ladungsdotierten Heisenberg-Spinketten, TU Dresden
Esther Jarossey: Synthesis and Crystal Growth of Honeycomb Quantum Magnets, TU Dresden
Piotr Lepucki: Untersuchung von Kobalt-dotiertem La0FeAs Poly- und Einkristallen mit NMR und NQR, TU Dresden
Sebastian Maletti: Temperatur- und zusammensetzungshaftige Untersuchungen an Na-Ionen-Akkumulatoren und Na, Li-Hybridakkumulatoren mit Lithiumtrivanadat (LiV3O8) als Kathodenmaterial, TU Dresden
Rick Ottolinger: Untersuchung der Dickenabhängigkeit charakteristischer Eigenschaften Ba2Y(Nb, Ta)O6 dotierter YBa2Cu3O7-δ-Schichten, TU Dresden
Viveksharma Prabhakara: Transport properties of Bi4Br4 and Bi4I4 topological insulators, TU Dresden
Norbert Puwenberg: Multi-Frequency Magnetic Force Microscopy of Curved Magnetic Thin Films, TU Dresden
Nicola Schädlich: Untersuchungen zum Einfluss der Erstarrungs- und Abkühlraten auf die Gefügebildung und die mechanischen Eigenschaften ausgewählter Stahlgusslegierungen, TU Dresden
Subao Shi: Fabrication of Single Crystal Organic Thin Film Transistor Arrays, TU Chemnitz
Pengfei Song: Strukturelle und ferroelektrische Eigenschaften von epitaktischen BaHfxTi1-xO3-Schichten, TU Dresden
Aoyu Tan: Spin Transport in Ultra-Thin Bi2Te3 Nanostructures, TU Dresden
Lakshmi Varadharajan: Nanoscale Organic Photodetector based on Rolled-up Nanomembrane Contact, TU Chemnitz
Christoph Wuttke: Thermische und elektrische Transportuntersuchungen an Rhodium-dotiertem BaFe2As2, TU Dresden
Longqian Xu: Fabrication of Molecular Thin-Film Rectifier and Photodetector Based on Rolled-up Nanomembrane Electrodes, TU Chemnitz
Calls and Awards 2017

Professorships

Thirupathaiah Setti
S.N. Bose National Centre for Basic Sciences, Under Department of Science and Technology, India

Awards

Oliver G. Schmidt
Gottfried-Wilhelm-Leibniz-Preis 2018 of the German Research Foundation (DFG)

Jeroen van den Brink
Zernike-Chair 2017, University of Groningen

Daniil Karnaushenko
Wilhelm-Ostwald-Nachwuchspreis 2017 of the Wilhelm-Ostwald-Gesellschaft

Yan Chen
Chinese Government Award for Outstanding Chinese Student Abroad

Julia Körner
Messtechnik-Preis des Arbeitskreises der Hochschullehrer für Messtechnik e.V. (AHMT)

Best poster/best contribution awards

Sonja Maria Weiz
Best Student Paper Award at the 18th International Conference on Biomedical Applications of Electrical Impedance Tomography (21.-24.6. at Dartmouth College, Hanover, NH)

Sonja M. Weiz
Best Presentation Award of the NanoBioSensors conference (Sept. 4-5, 2017 in Dresden, Germany)

Haifeng Xu
Best Poster Award at the International Conference on Micro/nanomachines (Aug. 25-28, 2017 in Wuhan, China)

IFW Awards

Konrad Kosiba
Tschirnhaus-Medal of the IFW for excellent PhD theses

Florian Rückerl
Tschirnhaus-Medal of the IFW for excellent PhD theses

Florian Bittner
Tschirnhaus-Medal of the IFW for excellent PhD theses
Scientific conferences and IFW colloquia 2017

March 13 - 14 Scientific Networking Workshop Thermoelectricity, IFW Dresden
March 15 1st Dresden Symposium on Electron Microscopy, jointly organized by cfaed, DCN, IFW and DFCNA
March 19 - 24 DPG-Frühjahrstagung der Sektion Kondensierte Materie (SKM) TU Dresden
April 3 - 5 XXVII International EPR seminar, IFW Dresden
April 24 - 28 Symposium on application of magneto-caloric materials on the Intermag Conference in Dublin (Ireland)
April 25 - 28 International Workshop TOP-SPIN 3: Spin and Topological Phenomena in Nanostructures, IFW Dresden
August 18 - 25 Summer School Spectroelectrochemistry, IFW Dresden
August, 28 - 30 3rd Condensed Matter Summer School 2017, Zbaszyn, Poland
Sep 6 - 8 Spins, waves and interactions 2017, Greifswald
Nov. 15 - 17 Cooperation Kick-Off Workshop mit SPINTEC Grenoble, IFW Dresden

IFW-Colloquium

Mainzer, Prof. Dr. Klaus, TU München, Kosmos und Chaos - Ordnung und Unordnung um uns, 27.02.2017
Schroers, Prof. Dr. Jan, Yale Univ., New Haven, USA, Materials Science and Development of Complex Materials, 03.05.2017
Ludwig, Prof. Dr. Alfred, Ruhr-Univ. Bochum, Discovery and Optimization of Nanostructured Functional Materials for Future Energy Systems, 10.05.2017
Christiansen, Prof. Dr. Silke, Helmholtz-Zentrum Berlin für Materialien und Energie 3D nanoarchitectures for energy- and bio-medical technologies - enhanced functionality through correlative microscopy and spectroscopy, 18.12.2017

Quantum Matter Colloquium

Berndt, Prof. Richard, Univ. Kiel, A surface science approach to molecular and atomic contacts, 18.01.2017
Janoschek, Dr. Marc, National Laboratory Los Alamos, USA, Neutron Spectroscopy on the Most Complex Element: Plutonium, 08.02.2017
Eberhardt, Prof. Wolfgang, Technical Univ. Berlin, DESY-CFEL Science, Hamburg, New Dimensions in Angle Resolved Photoemission from Solids; a complementary approach to as-laser spectroscopy, 22.02.2017
Krasnov, Prof. Vladimir, Stockholm University, Multiple quantum critical points in the doping phase diagram of cuprates, 12.04.2017
Hill, Prof. Stephen, Florida State Univ. and NHMFL Tallahassee, USA, EPR Studies of Molecular Lanthanide Spin Qubits, 24.05.2017
Rübhausen, Prof. Dr. Michael, Univ. Hamburg, Coupled Energy and Time Scales in Strongly Interacting Condensed Matter Systems, 31.05.2017
Cao, Prof. Gang, Univ. of Colorado at Boulder, USA, The Challenge of Spin-Orbit-Tuned Ground States in Iridates, 11.07.2017
Wrachtrup, Prof. Jörg, Univ. Stuttgart, Probing matter with quantum sensors, 23.08.2017
Trauzettel, Prof. Dr. Björn, University of Wuerzburg, Correlation effects in topological insulators, 06.09.2017
Heidrich-Meisner, Dr. Fabian, Ludwig-Maximilians-Univ. München, Advanced density matrix renormalization group methods for electron-phonon problems, 15.09.2017
Ovchinnikov, Prof. Dr. Yury N., Landau Institute for Theoretical Physics, Russian Academy of Science, Some achievements in theory of Superconductivity in L.D. Landau Institute, 20.09.2017
von Oppen, Prof. Dr. Felix, Dahlem Center for Complex Quantum Systems and Freie Univ. Berlin, Topological superconductivity and Majorana bound states in chains of magnetic adatoms on superconductors, 11.10.2017
Chubukov, Prof. Dr. Andrey V., Univ. of Minnesota, Minneapolis, USA, Superconductivity from repulsion, 23.10.2017
Renner, Prof. Christoph, Univ. of Geneva, Switzerland, Conventional aspects of ‘unconventional’ high temperature cuprate superconductors observed by scanning tunneling microscopy, 07.12.2017
Guests and Scholarships 2017

Guest scientists (stay of 4 weeks and more)

<table>
<thead>
<tr>
<th>Name</th>
<th>Home Institute</th>
<th>Home country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Ahmad, Mushtaq</td>
<td>COMSATS Institute of Information Technology</td>
<td>Pakistan</td>
</tr>
<tr>
<td>Dr. Allison, Morgan Charles</td>
<td>University Sydney</td>
<td>Australia</td>
</tr>
<tr>
<td>Dr. Amigo, Maria Lourdes</td>
<td>Universidad Nacional de Cuyo</td>
<td>Italy</td>
</tr>
<tr>
<td>Dr. Amusan, Akinyemi Abimbola</td>
<td>Otto-von-Guericke Universität Magdeburg</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Prof. Dr. Asthana, Rajiv</td>
<td>University of Wisconsin-Stout</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Aswartham, Saicharan</td>
<td>University of Kentucky</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Balach, Juan</td>
<td>National Council of Scientific and Technical Res.</td>
<td>Argentina</td>
</tr>
<tr>
<td>Dr. Basbus, Juan Felipe</td>
<td>Centro Atomico Bariloche, Rio Negro</td>
<td>Argentina</td>
</tr>
<tr>
<td>Dr. Bashlakov, Dmytro</td>
<td>Verkin Institute Kharkiv</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Dr. Bastien, Gael</td>
<td>University Grenoble Alpes</td>
<td>France</td>
</tr>
<tr>
<td>Prof. Brenig, Wolfram</td>
<td>TU Braunschweig</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr. Brüning, Raimund</td>
<td>Belektrownig</td>
<td>Germany</td>
</tr>
<tr>
<td>Dr. Caglieris, Federico</td>
<td>CNR-SPIN-Institute, Universität Genua</td>
<td>Italy</td>
</tr>
<tr>
<td>Prof. Dr. Cao, Gang</td>
<td>University of Colorado</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Charnukha, Aliaksei</td>
<td>University of California</td>
<td>Belarus</td>
</tr>
<tr>
<td>Dr. Darinskly, Alexander</td>
<td>Institut für Kristallographie Moskau</td>
<td>Russia</td>
</tr>
<tr>
<td>Prof. Dr. Dhagat-Jander, Pallavi</td>
<td>Oregon State University</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Dioguardi, Adam Paul</td>
<td>Los Alamos National Laboratory</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Egunov, Aleksandr</td>
<td>Institute of Materials Science of Mulhouse</td>
<td>Russia</td>
</tr>
<tr>
<td>Dr. Ertugrul, Onur</td>
<td>Izmir Katip Celebi University</td>
<td>Russia</td>
</tr>
<tr>
<td>Dr. He, Ran</td>
<td>University of Houston, USA</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Hu, Han</td>
<td>Nanyang Technological University Singapore</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Huang, Shao-Zhuhan</td>
<td>Wuhan University of Technology</td>
<td>China</td>
</tr>
<tr>
<td>Prof. Jander, Albertrecht</td>
<td>Oregon State University, USA</td>
<td>USA / Germany</td>
</tr>
<tr>
<td>Dr. Karmakar, Koushik</td>
<td>Indian Institute of Science Education and Research</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Kataeva, Olga</td>
<td>Arbusov Institute, Kazan</td>
<td>Russia</td>
</tr>
<tr>
<td>Dr. Krupskaya, Yulia</td>
<td>Universität Genf</td>
<td>Russia</td>
</tr>
<tr>
<td>Dr. Kumar, Sanjeev</td>
<td>Iiser Mohali Faculty of Physics</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Kuzian, Roman</td>
<td>Institute for Materials Science Kiev</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Dr. Kvitnytska, Oksana</td>
<td>Verkin Institute Kharkiv</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Dr. Lee, Jae-Ki</td>
<td>Korea Electrotechnology Research Institute</td>
<td>South Korea</td>
</tr>
<tr>
<td>Dr. Lee, Minho</td>
<td>Korea Electrotechnology Research Institute</td>
<td>South Korea</td>
</tr>
<tr>
<td>Dr. Li, Yuan</td>
<td>Institute of Semiconductors Beijing</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Liu, Fupin</td>
<td>University of Science and Technology Hefei</td>
<td>China</td>
</tr>
<tr>
<td>Dr. Machata, Peter</td>
<td>Slovak University of Technology Bratislava</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Dr. Morozov, Igor</td>
<td>Lomonosov State University Moscow</td>
<td>Russia</td>
</tr>
<tr>
<td>Prof. Dr. Morr, Dirk</td>
<td>University of Illinois at Chicago</td>
<td>USA</td>
</tr>
<tr>
<td>Prof. Dr. Naidiuk, Iurii</td>
<td>Verkin Institute Kharkiv</td>
<td>Ukraine</td>
</tr>
<tr>
<td>Dr. Novikov, Sergei</td>
<td>Ioffe Institut Sakt Petersburg</td>
<td>Russia</td>
</tr>
<tr>
<td>Dr. Nussinov, Zohar</td>
<td>Washington University</td>
<td>USA</td>
</tr>
<tr>
<td>Dr. Otalora Arias, Jorge Augusto</td>
<td>Center for Nanoscience & Nanotechnology</td>
<td>Colombia</td>
</tr>
<tr>
<td>Prof. Dr. Ovchinnikov, Yuri</td>
<td>Landau Institute for Theoretical Physics</td>
<td>Russia</td>
</tr>
<tr>
<td>Dr. Palani, Syamperumal Anand</td>
<td>Indian Institute of Technology Indore</td>
<td>India</td>
</tr>
<tr>
<td>Prof. Patra, Ajit Kumar</td>
<td>Central University of Rajasthan</td>
<td>India</td>
</tr>
<tr>
<td>Dr. Ramachandran, Ganesh</td>
<td>Institute of Mathematical Sciences, Chennai</td>
<td>India</td>
</tr>
<tr>
<td>Prof. Dr. Rappa, Peter</td>
<td>Slovak University of Technology</td>
<td>Slovakia</td>
</tr>
<tr>
<td>Name</td>
<td>Home country</td>
<td>Donor</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Dr. Ghimire, Madhav Prasad</td>
<td>Nepal</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Jayamani, Jayaraj</td>
<td>India</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Kim, Beom Seok</td>
<td>South Korea</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Kravchuk, Volodymyr</td>
<td>Ukraine</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Morrow, Ryan Christopher</td>
<td>USA</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Shrestha, Nabeen Kumar</td>
<td>Nepal</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Wenig, Qunhong</td>
<td>China</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dr. Zhang, Yang</td>
<td>China</td>
<td>Alexander von Humboldt Foundation</td>
</tr>
<tr>
<td>Dedkova, Katerina</td>
<td>Czech Republic</td>
<td>DAAD</td>
</tr>
<tr>
<td>Dr. Hong, Xiaochen</td>
<td>China</td>
<td>DAAD</td>
</tr>
<tr>
<td>Dr. Kamashev, Andrey</td>
<td>Russia</td>
<td>DAAD</td>
</tr>
<tr>
<td>Meinero, Martina</td>
<td>Italy</td>
<td>DAAD</td>
</tr>
<tr>
<td>Charbonneau, Valerie</td>
<td>Canada</td>
<td>DAAD</td>
</tr>
<tr>
<td>Prabhune, Ameya</td>
<td>India</td>
<td>DAAD</td>
</tr>
<tr>
<td>Saha, Snehasyoti</td>
<td>India</td>
<td>DAAD</td>
</tr>
<tr>
<td>Ghunaim, Rasha</td>
<td>Palestinian territories</td>
<td>DAAD</td>
</tr>
<tr>
<td>Shahid, Rub Nawaz</td>
<td>Pakistan</td>
<td>DAAD</td>
</tr>
<tr>
<td>Dr. Ahmad, Mushtaq</td>
<td>Pakistan</td>
<td>DAAD Leibniz Program</td>
</tr>
<tr>
<td>Moo, Guo Sheng James</td>
<td>Singapore</td>
<td>BMBF - Green Talents</td>
</tr>
<tr>
<td>Linnemann, Julia</td>
<td>Germany</td>
<td>Deutsche Bundesstiftung Umwelt</td>
</tr>
<tr>
<td>Dr. Xi, Lixia</td>
<td>China</td>
<td>Graduiertenakademie TU Dresden</td>
</tr>
<tr>
<td>Blitzner, Florian</td>
<td>Germany</td>
<td>Graduiertenakademie TU Dresden</td>
</tr>
<tr>
<td>Mix, Torsten</td>
<td>Germany</td>
<td>Graduiertenakademie TU Dresden</td>
</tr>
<tr>
<td>Pahlke, Patrick</td>
<td>Germany</td>
<td>Graduiertenakademie TU Dresden</td>
</tr>
<tr>
<td>Sieger, Max</td>
<td>Germany</td>
<td>Graduiertenakademie TU Dresden</td>
</tr>
<tr>
<td>Lupu, Oana-Gratiela</td>
<td>Romania</td>
<td>EU - ERASMUS MUNDUS</td>
</tr>
<tr>
<td>Manga, Mihaela-Monica</td>
<td>Romania</td>
<td>EU - ERASMUS MUNDUS</td>
</tr>
<tr>
<td>Batalha, Rodolfo Lisboa</td>
<td>Brazil</td>
<td>CAPES Foundation</td>
</tr>
<tr>
<td>Dr. Wang, Jing</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Deng, Liang</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Name</td>
<td>Home country</td>
<td>Donor</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>Ding, Ling</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Fan, Xingce</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Feng, Le</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>He, Tianbing</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Li, Zichao</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Li, Yang</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Liu, Lixiang</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Lu, Xueyi</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Sui, Yan Fei</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Wang, Pei</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Wang, Ju</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Xu, Haifeng</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Xue, Peng</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Yin, Yin</td>
<td>China</td>
<td>China Scholarship Council</td>
</tr>
<tr>
<td>Dr. Wuppulluri, Madhuri</td>
<td>India</td>
<td>Eleonore Trefftz Guest Professorship</td>
</tr>
<tr>
<td>Dr. Tynell, Tommi Paavo</td>
<td>Finland</td>
<td>Finnish Cultural Foundation</td>
</tr>
<tr>
<td>Miyajima, Tomohiro</td>
<td>Japan</td>
<td>Kyushu University</td>
</tr>
<tr>
<td>Gao, Bo</td>
<td>China</td>
<td>Harbin Institute of Technology</td>
</tr>
<tr>
<td>Li, Haichao</td>
<td>China</td>
<td>Harbin Institute of Technology</td>
</tr>
<tr>
<td>Liu, Bo</td>
<td>China</td>
<td>Internationale Graduiertenschule</td>
</tr>
<tr>
<td>Park, Eunmi</td>
<td>South Korea</td>
<td>Internationale Graduiertenschule</td>
</tr>
<tr>
<td>Yousefli, Soroor</td>
<td>Iran, Islam. Rep.</td>
<td>Iran Powder Metallurgy Complex</td>
</tr>
<tr>
<td>Salman Omar, Oday</td>
<td>Iraq</td>
<td>Iraqi government</td>
</tr>
<tr>
<td>Lara Ramos, David Alberto</td>
<td>Mexico</td>
<td>Mexican government</td>
</tr>
<tr>
<td>Dr. Gan, Li-Hua</td>
<td>China</td>
<td>Natural Science Foundation of China</td>
</tr>
<tr>
<td>Takeda, Akira</td>
<td>Japan</td>
<td>Niigata University</td>
</tr>
<tr>
<td>Assoc. Prof. Dr. Wang, Shenghai</td>
<td>China</td>
<td>Shandong University Weihai</td>
</tr>
<tr>
<td>Fernandez Roldan, Jose Angel</td>
<td>Spain</td>
<td>Spanish government</td>
</tr>
</tbody>
</table>
Guest stays of IFW members at other institutes 2017

Gael Bastien 01.10.2017 – 23.10.2017, NMR Messungen, Laboratoire de Physique du solide, Orsay, France

Bernd Büchner 07.09.2017 – 22.09.2017, Lectures at KITP, St. Barbara, USA

Alexander Fedorov 01.06.2017 – 19.06.2017, Beamline Bessy, Berlin, Germany

Ching-Hao Chang 13.02.2017 – 03.03.2017, Academia Sinica, National Tsing Hua University, and National Chiao Tung University, China, Research cooperation on spintronics, quantum transport, topological material, and magnetotransport
07.08.2017 – 24.08.2017, Academia Sinica, National Tsing Hua University, and National Chiao Tung University, China, Research cooperation on spintronics, quantum transport, topological material, and magnetotransport

Stefan-Ludwig Drechsler 18.06.2017 – 03.07.2017, Vereinigtes Institut für Kernforschung (VIK) Dubna, Russia, Working visit on super conductors and magnetism

Jörg Fink 01.05.2017 – 31.05.2017, Gastaufenthalt an der Universität of British Columbia, Vancouver, Canada
03.04.2017 – 23.04.2017, Messungen bei Bessy, Berlin, Deutschland

Lars Giebeler 18.03.2017 – 06.04.2017, Centro Atómico Bariloche (CAB), San Carlos de Bariloche, Argentina, Research cooperation
29.11.2017 – 15.12.2017, Centro Atómico Bariloche (CAB), San Carlos de Bariloche, Argentina, Research cooperation

Romain Giraud 03.01.2017 – 20.01.2017, Collaboration SPINTEC, CNRS, Spintec, Grenoble, France
02.05.2017 – 24.05.2017, Collaboration SPINTEC, CNRS, Spintec, Grenoble, France
06.06.2017 – 23.06.2017, Collaboration SPINTEC, CNRS, Spintec, Grenoble, France
28.08.2017 – 14.09.2017, Collaboration SPINTEC, CNRS, Spintec, Grenoble, France
20.11.2017 – 08.12.2017, Collaboration SPINTEC, CNRS, Spintec, Grenoble, France

Junhee Han 29.07.2017 – 11.08.2017, Shanghai University, Shanghai, China, Research cooperation

Volker Hoffmann 09.04.2017 – 01.05.2017, Chuo University, Tokyo, Japan, Research cooperation

Vladislav Kataev 26.04.2017 – 11.05.2017, Measurements and research at Zavoisky Physical Technical Institute, Kazan, Russia
21.09.2017 – 08.10.2017, Measurements and invited talk at Zavoisky Physical Technical Institute, Kazan, Russia
Beom Seok Kim 20.01.2017 – 26.02.2017, Yonsei University, Seoul, Republic of Korea, Research cooperation

Denis Krylov 05.06.2017 – 18.07.2017, SQUID Messungen, Universität Zürich, Switzerland

Andrey Małyuk 30.10.2017 – 24.11.2017, Crystal Growth Collaboration, Yamanashi University, Kofu, Japan

Rafael Gregorio Mendes 17.03.2017 – 16.05.2017, Soochow University, Suzhou, China, Measurements and research cooperation
22.10.2017 – 22.12.2017, Soochow University, Suzhou, China, Measurements and research cooperation

David Alberto Ramos Lara 25.02.2017 – 13.05.2017, Purdue University, Indiana, USA

Mark H. Rümmeli 10.05.2017 – 15.07.2017, Soochow University, Suzhou, China, Measurements and research cooperation

Maik Scholz 02.02.2017 – 31.05.2017, Measurements and training, Universität Okayama, Japan

Mihai-Ionut Sturza 27.11.2017 – 22.12.2017, research stay, measurements and invited talk, National Institute of Materials Physics, Bukarest, Romania

09.10.2017 – 21.10.2017, European School on Magnetism Cargèse, Korsika, France

Ulrike Wolff 22.09.2017 – 05.11.2017, Jozef Stefan Institut Ljubljana, Slovenia, In-situ measurements TEM
01.04.2017 – 13.04.2017, Jozef Stefan Institut Ljubljana, Slovenia, In-situ measurements TEM

Lixia Xi 23.07.2017 – 12.08.2017, Foundry Research Institute, Krakow, Poland, Research cooperation

Yang Zhang 12.01.2017 – 04.02.2017, IASTU Tsinghua University, Beijing, China, Research visit and talk on Spin Hall effect without spin orbit integration in non collinear magnets
19.05.2017 – 19.07.2017, Forschungszentrum Jülich, Research visit and collaboration on Photocurrent from circularly polarized light
01.10.2017 – 31.12.2017, RIKEN, Wako, Japan, Research visit - Circular photogalvanic effect and shift current In Weyl semimetals, and nonlinear inverse Nernst effect from Berry curvature dipole
Board of trustees

Jörg Geiger, Saxonian Ministry of Science and Art - Head -
Dr. Peter Schroth, Federal Ministry of Education and Research
Prof. Dr. Gerhard Rödel, TU Dresden
Prof. Dr. Sibylle Günter, MPI for Plasma Physics

Scientific Advisory Board

Prof. Dr. Maria-Roser Valenti, Univ. Frankfurt, Germany - Head -
Prof. Dr. Robert H. Blick, Univ. Hamburg, Germany
Prof. Dr. Sang-Wook Cheong, Rutgers, USA
Prof. Dr. Andrey Chubukov, Univ. of Minnesota, USA
Prof. Dr. Ralph Claessen, Univ. Würzburg, Germany
Prof. Dr. Matthias Göken, Univ. Erlangen-Nürnberg, Germany
Dr. Heinz Neubert, Siemens AG, Germany
Prof. Dr. Nini Pryds, TU Denmark Lyngby, Denmark
Dr. Jürgen Rapp, Robert Bosch GmbH, Germany
Prof. Dr. Roberta Sessoli, Univ. di Firenze, Italy