Towards an intelligent selection of analytical lines in GD-OES

Zdeněk Weiss
LECO Instrumente Plzeň, s.r.o.
Czech Republic
Outline

1. GD-OES instruments and GD-OES spectra
2. Instrumental factors: line interferences and sensitivity variations
3. Links between applications and fundamentals: methods, goals and motivation
GD-OES instruments and the nature of GD-OES spectra

1. **optical system**: polychromators with PMTs, monochromators, CCD-based optics, less common instruments (Echelle systems, Fourier Transform Spectrometers)

2. **Instrumental parameters**:
 - resolution / resolving power
 - wavelength range
 - sensitivity / dynamic range
 - speed (sampling rate)

3. What the Mother Nature offers and how we can read it
A typical GD-OES spectrum: pure Ti in Ar discharge

the wavelength range: 160 nm to ≈560 nm

111 Ti lines have \(I > I_{\text{max}} / 10 \) (≈20 are analytically important ?)
- all 1031 (1446) lines ... may interfere with other elements
- this range at a resolution of 50 pm ... 8000 “channels”
Line interferences and analytical accuracy

1. Line interferences occur at common instruments and are frequent.

2. They can be corrected for in a calibration, but with inevitable trade-offs, on
 - precision,
 - sensitivity.

3. Matrix-specific selection of lines, incl. multiple lines for a single element
 (!! - gaps in the wavelength range, etc.)

4. ‘true’ matrix effects
Example: analysis of Ni alloys on a CCD instrument

calibration ranges (some could be extended towards the ppm region)
Ni alloys: the list of the standards used (combined with some steels and irons)
Cobalt in Ni alloys: calibration of the Co I line at 240.725 nm

LECO GDS500A: res. ≈75 pm
8 IECs, 15 degrees of freedom

3 more lines for cobalt, the IEC table for 2 instruments

LECO GDS500A : res. \(\approx 75\) pm

<table>
<thead>
<tr>
<th>Co line [(^\text{nm})]</th>
<th>BEC [ppm Co]</th>
<th>IEC [ppm Co / 1% interf.el.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fe Mo Nb W V Cr Ti Ta Ni</td>
</tr>
<tr>
<td>238.190</td>
<td>1 037</td>
<td>3 196 47 66 92</td>
</tr>
<tr>
<td>240.725</td>
<td>1 257</td>
<td>378 76 128 69 132 87 52 247</td>
</tr>
<tr>
<td>340.512</td>
<td>728</td>
<td>70 251 13 136 47 14</td>
</tr>
<tr>
<td>387.312</td>
<td>958</td>
<td>77 55 59 271 218 15 561 33</td>
</tr>
</tbody>
</table>

LECO GDS900 : res. \(\approx 40\) pm

<table>
<thead>
<tr>
<th>Co line [(^\text{nm})]</th>
<th>BEC [ppm Co]</th>
<th>IEC [ppm Co / 1% interf.el.]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Fe Mo Nb W V Cr Ti Ta Ni</td>
</tr>
<tr>
<td>238.190</td>
<td>135</td>
<td>3 156 84 43 63 472</td>
</tr>
<tr>
<td>240.725</td>
<td>431</td>
<td>104 60 54 42 23 50</td>
</tr>
<tr>
<td>340.512</td>
<td>1 057</td>
<td>65 352 10 91 18 31</td>
</tr>
<tr>
<td>387.312</td>
<td>384</td>
<td>22 38 230 167 597 22</td>
</tr>
</tbody>
</table>

e.g. INCONEL925 (BS 925): \(0.34\%\) Co, \(2.20\%\) Ti

if this line was not corrected for Ti:

we would get \(0.47\%\) Co \(...\) there would be a \(38\%\) rel. error
the accuracy achieved for cobalt

- \(\frac{I_{Co}}{I_{Ni}} \) versus \(\frac{c_{Co}}{c_{Ni}} \), ref. line = Ni I, 460.500 nm, LECO GDS500
- line Co I, 240.725 nm, IECs: Fe, Mo, Ti, 22 degrees of freedom

- declared relative uncertainties of the standards,
- the magnitude of rel. errors
the ‘multi-line’ approach

cobalt, 5 lines combined: relative errors drop by a median factor of 2.8
The applications and the fundamentals

- Two views of the reality: communication is needed in both directions

- The applications: how relevant are our empirical, though sometimes simplistic approaches?

- The fundamentals:
 - real world is more complex than our selected examples for which we think we have explanations.
 - how to communicate our findings to get the message through?
A look round the corner: TRs and TR diagrams

- how strongly are excited different states of an atom or an ion and why?
- collisional excitation, excitation-related matrix effects
- a way to deal with the complexity of GD excitation
what is a TR diagram for an atom or ion:

radiative transition rate for \((i \rightarrow j)\) :

\[
\frac{n_{ij}}{I_{ij}} \propto \lambda_{ij} I_{ij}
\]

Total population /depopulation rate of a level:

steady state:

\[
R(\text{coll.}) = \sum_j n_{ij} - \sum_k n_{ki}
\]
Ti I: (TR/g) diagram in Ar discharge

there is no evidence for selective excitation
What has been done so far

- **2013**: TR diagrams for Mn
- **2014**: TRs diagrams for Cu II, Fe II
- **2015**: a review about TR diagrams
- **2016**: Effects of O, N, H - description by TRR diagrams
- pending: TR diagrams for Ti I, Ti II
Matrix effects caused by oxygen, nitrogen, hydrogen

- different elements behave differently
- different lines/excited levels of an element behave differently
- no sound ‘general’ approach to handling these effects is in sight yet
- but something can be done, after all
- example: the effects on GD-OES spectra of Cu$^+$ ions in Ne discharge caused by O, N, H
- TRR diagrams: instead of bare TR-s, on the ordinate are their ratios:

$$\frac{TR(\text{with the light element present})}{TR(\text{without any light element present})}$$
addition of nitrogen: nothing happens
addition of H\textsubscript{2} or O\textsubscript{2}:

some explanations have been proposed:

Acknowledgments:

The TR diagrams are based on high-res. FTS spectra measured at Imperial College, London, UK, in 2010, under the RTN Gladnet, Project P16.

Special thanks for input and discussions to

Prof. Edward Steers
Prof. Juliet Pickering
Dr. Volker Hoffmann
For More Information

Contact LECO at:

LECO European Application and Technology Center
Biotechpark, Building B 5.2
Max-Dohrn-Str. 8-10
10589 Berlin, Germany

Phone: +49 30 669 33 531
Email: admin_berlin_lab@leco.com
Thank you for attention.
Danke für die Aufmerksamkeit!