Enhancement of the Jahn-Teller distortion by magnetization in manganites

Citation: Appl. Phys. Lett. 100, 112406 (2012); doi: 10.1063/1.3691946
View online: http://dx.doi.org/10.1063/1.3691946
View Table of Contents: http://apl.aip.org/resource/1/APPLAB/v100/i11
Published by the American Institute of Physics.

Related Articles
Reliable nucleation of isolated magnetic antivortices
Mn2PtIn: A tetragonal Heusler compound with exchange bias behavior
Origin of ferromagnetism and oxygen-vacancy ordering induced cross-controlled magnetoelectric effects at room temperature
Spherical sample holders to improve the susceptibility measurement of superparamagnetic materials
Piezoresponse force microscopy and vibrating sample magnetometer study of single phased Mn induced multiferroic BiFeO3 thin film

Additional information on Appl. Phys. Lett.
Journal Homepage: http://apl.aip.org/
Journal Information: http://apl.aip.org/about/about_the_journal
Top downloads: http://apl.aip.org/features/most_downloaded
Information for Authors: http://apl.aip.org/authors

ADVERTISEMENT
Enhancement of the Jahn-Teller distortion by magnetization in manganites

Y. Y. Chu,1,2 H. H. Wu,2 S. C. Liu,2 Hsiu-Hau Lin,3 J. Matsuno,4 H. Takagi,4,5 J. H. Huang,1 J. van den Brink,6 C. T. Chen,7 and D. J. Huang6

1Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
2National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
3Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
4Advanced Science Institute, RIKEN, Wako, Saitama 351-0198, Japan
5Department of Advanced Materials, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
6Institute for Theoretical Solid State Physics, IFW Dresden, D-01171 Dresden, Germany

(Received 23 November 2011; accepted 13 February 2012; published online 15 March 2012)

Using measurements of resonant x-ray scattering from a LaMnO3/SrMnO3 superlattice grown on SrTiO3(001), we present experimental evidence for the enhancement of the Jahn-Teller distortion by magnetic ordering in manganites. With a specially tuned periodicity of the superlattice, scattering due to the Jahn-Teller (JT) distortion is separated from charge and magnetic scattering. The measured JT distortion is markedly enhanced upon the emergence of magnetization and strongly correlated with the spin ordering in the superlattice. Such strong correlation reveals the nature of electron-electron interaction for orbital ordering in manganites. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3691946]

Understanding of the interplay between spin, charge, and orbital degrees of freedom is important to engineer the emergent physical properties transition-metal compounds.1 Perovskite LaMnO3 is a prototypical example showing cooperative Jahn-Teller (JT) distortions and orbital ordering. Two mechanisms have been proposed to explain the orbital ordering in manganites: electron-phonon coupling2 and superexchange interaction.3 The electron-phonon coupling can cause the JT distortions first,4–6 and the orbital polarization is further enhanced by Coulomb repulsion.7 In the second scenario, the many-body superexchange interaction, originating from the degenerate εg orbitals, drives the orbital ordering and in turn leads to JT distortions.8–10 To reveal the origin of orbital ordering in manganites, it is decisive to investigate the correlation between JT distortion and spin ordering, which is only remotely related to the electron-phonon interactions. Such correlation in most systems is obscured by other and more profound magnetic effects, so it is difficult to observe.

L-edge resonant x-ray scattering of transition-metal compounds provides an effective means to resolve this conundrum.11–13 With a synthetic superlattice, one can separate the contribution of orbital ordering in resonant x-ray scattering from that of charge scattering. Because the cross section of charge scattering of x-rays scales with \((\epsilon_1 \cdot \epsilon_2)^2\) in which the polarizations of incident and scattered x-rays are \(\epsilon_1\) and \(\epsilon_2\), respectively, the cross section of charge scattering can be strongly suppressed by suitably tuning the angle between \(\epsilon_1\) and \(\epsilon_2\). Such control is possible in artificial superlattices. The relative contribution of orbital scattering thus becomes separated.

In this letter, based on the measurements of resonant soft-x-ray scattering, we report the temperature dependence of the magnetic structures and the JT distortion in a (LaMnO3)\(_n\)/(SrMnO3)\(_m\) superlattice with \(n\) being the periodicity. To suppress the contribution of charge scattering, we tuned the superlattice such that the scattering angle \(2\theta\) is close to 90°, e.g., \(n = 4\). The JT distortion is correlated with the magnetic order and follows a similar dependence on temperature. Although the local JT distortion is likely due to the electron-phonon interaction, our measurements provide evidence for many-body origin of the orbital ordering in manganites.

The (LaMnO3)\(_3\)/(SrMnO3)\(_4\) superlattice was epitaxially grown by pulsed laser deposition on a SrTiO3 (001) substrate cut with a surface normal tilted by 0.3° toward the \(a\) axis, and the repetition for the superstructure was 30. The soft-x-ray scattering measurements were performed by using the beamline 05B3 of the National Synchrotron Radiation Research Center, Taiwan. The scattering plane in which momentum transfer \(q\) lies is defined by the \(a\) and \(c\) axes, i.e., \(q = (q_a, 0, q_c)\) in units of \((2\pi / a, 2\pi / b, 2\pi / c)\), in which \(a = 3.905\) Å is the lattice parameter of the substrate and \(\Lambda\) is the periodicity of the superlattice, i.e., \(\Lambda \approx 8a\). The electric vector of incident soft x-rays is switchable to be parallel (perpendicular) to the \(b\) axis, i.e., \(\sigma (\pi)\) polarization.

The inset of Fig. 1(a) illustrates the projection of the superlattice onto the scattering plane and shows that the magnetic modulation vector \(Q_M\) is not parallel to that of the superstructure \(Q_s\). In comparison with measurements of other manganites,12,14,15 the energy scans plotted in Fig. 1(a) indicate that magnetic scattering prevails at energy 640.5 eV at which the scattering from the superstructure with \(q = (0, 0, 2)\) is strongly suppressed, because \(2\theta \approx 75.9°\). Figure 1(b) maps the two-dimensional distribution in the \(q_xq_y\) plane taken with 640.5-eV x-rays at 80 K. We found two modulation vectors (−0.0021 0 1.610) and (−0.0020 2 0.807), denoted as \(Q_{1.5}\) and \(Q_2\), respectively, corresponding to \((0, 0, 2)_M\) and \((0, 0, 2)_M\) of a superlattice grown on a nonmuscovite substrate; subscript \(M\) denotes that \(Q_M\) is expressed in units of \((2\pi / a, 2\pi / b, 2\pi / c)\) with \(\Lambda_0\) being the periodicity of a perfect superlattice, i.e., \(\Lambda_0 = 8a\). The energy scans with \(Q_M\) resemble closely those of magnetic scattering of other manganites;
these modulation vectors are hence of magnetic origin. In addition, as shown in Fig. 1(c), the scattering intensity with \(Q_M \) vanishes above the Neél temperature (\(T_N \)) of SrMnO\(_3\), lending further support for its magnetic origin.

Temperature-dependent measurements of magnetic scattering plotted in Fig. 2(a) show magnetic transitions of the LaMnO\(_3\)/SrMnO\(_3\) superlattice. As the temperature decreases, the scattering intensities of the half-order \(Q_M \) (\(Q_{1.5} \) and \(Q_{2.5} \)) begin to emerge at \(T_{N1} = 220 \) K, whereas those of \(Q_2 \) and \(Q_3 \) appear at a \(T_{N2} = 198 \) K. The clear disparity between the two transitions provides incontestable evidence for two distinct magnetic orders in the superlattice. In addition, the in-plane resistivity of the superlattice exhibits a crossing from insulating to metallic behavior\(^{16,17} \) at \(T_{MI} = 250 \) K, and the magnetization \(M \) measured with a superconducting quantum interference device (SQUID) under a magnetic field 0.05 T appears at \(T_{MI} \), as plotted in Figs. 3(a) and 3(b). These observations indicate that, upon cooling across 250 K, the magnetization of the superlattice without interlayer coupling develops before the formation of three-dimensional AFM ordering.

To understand the observed magnetic transitions of the superlattice, we propose the following scenario. The onset temperature of the superlattice magnetism is 250 K. Between 250 and 220 K, there is no interlayer magnetic coupling and the most likely is the existence of interfacial magnetization for lack of magnetic peaks in the scattering measurement. As the temperature is cooled across 220 K, the existence of half-order \(Q_M \) implies an antiferromagnetic alignment or a fluctuation in the magnitude of the net magnetization. Such a magnetization results probably from the magnetic coupling in SrMnO\(_3\), because bulk LaMnO\(_3\) and SrMnO\(_3\) are \(A\)- and \(G\)-type AFM insulators with the Neél temperatures 140 and 233 K, respectively. With the further decrease of temperature across 198 K, the magnetization of LaMnO\(_3\) produces the onset of the integer \(Q_M \) peaks.\(^{18,19} \)

After establishing the magnetic transition, we examined the influence of magnetization on JT and orbital orderings by choosing the periodicity \(\Lambda = 8a \) to suppress charge scattering as illustrated in Fig. 4(a). Because \((\epsilon_1 \cdot \epsilon_2) = 0.059 \) for \(\pi \) polarization, the resonant scattering of \(q = (0 0 2) \)
measured at the Mn L$_3$-edge with π polarization is dominated by orbital/ JT scattering. The presence of two peaks at 639 and 642 eV in the energy scan plotted in Fig. 4(b), labeled A and B, respectively, fully agrees with atomic multiplet calculations. As shown in Fig. 4(c), Castleton and Altarelli20 concluded that peak A arises from orbital ordering and is insensitive to the JT distortion, whereas peak B is due to transitions into the split t_{2g} levels with an intensity that is instead sensitive to the JT distortion. The intensity ratio between peaks A and B, thus, yields an experimental means to assess whether the JT distortion alters across the magnetic transition of the superlattice.

The inset of Fig. 3(c) plots the L_3-edge resonant soft x-ray scattering of $q = (0 0 2)$ measured with π polarization at various temperatures. To capture the correlation between JT distortion and spin ordering, we compare the temperature evolution of ratio B/A plotted in Fig. 3(c) with those of magnetic scattering, in-plane resistivity, and magnetization M. Ratio B/A exhibits a strong enhancement at the onset of the magnetization, providing direct evidence of strong correlation between the global JT distortion and spin ordering in the superlattice.

The observation of the enhanced JT distortion with spin ordering reveals its many-body origin, as the spin order is driven mainly by the electronic correlations. A plausible scenario for the cooperative JT distortion thus emerges: electron-phonon interactions cause local JT distortions, but they rely on both electron-electron and electron-phonon interactions to achieve global alignment. This picture explains why the local JT distortions persist at high temperatures at which both spin and orbital orderings are absent. It also justifies the correlated enhancement of JT distortion across the transition temperatures of spin and orbital orderings.

We thank A. Fujimori and C. Y. Mou for valuable discussions and staffs of NSRRC for technical support. National Science Council of Taiwan in part supported this work. This work was also partially supported by Grant-in-Aid for Scientific Research (B) (22340108) of Japan.