Institute for Metallic Materials - Recent Highlights

Building Hierarchical Martensite

Stefan Schwabe, Robert Niemann, Anja Backen, Daniel Wolf, Christine Damm, Tina Walter, Hanuš Seiner, Oleg Heczko, Kornelius Nielsch, and Sebastian Fähler
Adv. Funct. Mater.  2005715 (2020)
(DOI: 10.1002/adfm.202005715)

Martensitic materials show a complex, hierarchical microstructure containing structural domains separated by various types of twin boundaries. Several concepts exist to describe this microstructure on each length scale, however, there is no comprehensive approach bridging the whole range from the nano- up to the macroscopic scale. Here, it is described for a Ni-Mn-based Heusler alloy how this hierarchical microstructure is built from scratch with just one key parameter: the tetragonal distortion of the basic building block at the atomic level. Based on this initial block, five successive levels of nested building blocks are introduced. At each level, a larger building block is formed by twinning the preceding one to minimize the relevant energy contributions locally. This naturally explains the coexistence of different types of twin boundaries. The scale-bridging approach of nested building blocks is compared with experiments in real and reciprocal space. The approach of nested building blocks is versatile as it can be applied to the broad class of functional materials exhibiting diffusionless transformations.

Unveiling the phonon scattering mechanisms in half-Heusler thermoelectric compounds

Ran He, Taishan Zhu, Yumei Wang, Ulrike Wolff, Jean-Christophe Jaud, Andrei Sotnikov, Pavel Potapov, Daniel Wolf, Pingjun Ying, Max Wood, Zhenhui Liu, Le Feng, Nicolás Pérez, G. Jeffrey Snyder, Jeffrey C. Grossman, Kornelius Nielsch and Gabi Schierning
Energy & Environmental Science (2020)
(DOI: 10.1039/D0EE03014G)

Half-Heusler (HH) compounds are among the most promising thermoelectric (TE) materials for large-scale applications due to their superior applicability such as high power factor, excellent mechanical and thermal reliability, and non-toxicity. Their only drawback is the remaining-high lattice thermal conductivity. Various mechanisms were reported with claimed effectiveness to enhance the phonon scattering of HH compounds including grain-boundary scattering, phase separation, and electron-phonon interaction. In this work, however, we show that point-defect scattering has been the dominant mechanism for phonon scattering other than the intrinsic phonon-phonon interaction for ZrCoSb and possibly many other HH compounds. Induced by the charge-compensation effect, the formation of Co/4d Frenkel point defect is responsible for the drastic reduction of lattice thermal conductivity in ZrCoSb1-xSnx. Our work systematically depicts the phonon scattering profile of HH compounds and illuminates subsequent material optimizations.

Thermomagnetic generator with a pretzel-like magnetic flux topology

Anja Waske, Daniel Dzekan, Kai Sellschopp, Dietmar Berger, Alexander Stork, Kornelius Nielsch & Sebastian Fähler
Nature Energy 4, pages68–74 (2019)
DOI: 10.1038/s41560-018-0306-x

To date, there are very few technologies available for the conversion of low-temperature waste heat into electricity. Thermomagnetic generators are one approach proposed more than a century ago. Such devices are based on a cyclic change of magnetization with temperature. This switches a magnetic flux and, according to Faraday’s law, induces a voltage. Here we demonstrate that guiding the magnetic flux with an appropriate topology of the magnetic circuit improves the performance of thermomagnetic generators by orders of magnitude. Through a combination of experiments and simulations, we show that a pretzel-like topology results in a sign reversal of the magnetic flux. This avoids the drawbacks of previous designs, namely, magnetic stray fields, hysteresis and complex geometries of the thermomagnetic material. Our demonstrator, which is based on magnetocaloric plates, illustrates that this solid-state energy conversion technology presents a key step towards becoming competitive with thermoelectrics for energy harvesting near room temperature.

Integrated microthermoelectric coolers

Guodong Li, Javier Garcia Fernandez, David Alberto Lara Ramos, Vida Barati, Nicolás Pérez, Ivan Soldatov, Heiko Reith, Gabi Schierning & Kornelius Nielsch
Nature Electronics 1, 555-561 (2018)
(DOI: 10.1038/s41928-018-0148-3)

Microthermoelectric modules are of potential use in fields such as energy harvesting, thermal management, thermal imaging and high-spatial-resolution temperature sensing. In particular, microthermoelectric coolers (µ-TECs)—in which the application of an electric current cools the device—can be used to manage heat locally in microelectronic circuits. However, a cost-effective µ-TEC device that is compatible with the modern semiconductor fabrication industry has not yet been developed. Furthermore, the device performance of µ-TECs in terms of transient responses, cycling reliability and cooling stability has not been adequately assessed. Here we report the fabrication of µ-TECs that offer a rapid response time of 1 ms, reliability of up to 10 million cycles and a cooling stability of more than 1 month at constant electric current. The high cooling reliability and stability of our µ-TEC module can be attributed to a design of free-standing top contacts between the thermoelectric legs and metallic bridges, which reduces the thermomechanical stress in the devices.

Mixed axial–gravitational anomaly in the Weyl semimetal NbP

Johannes Gooth,  Anna C. Niemann, Tobias Meng, Adolfo G. Grushin, Karl Landsteiner, Bernd Gotsmann, Fabian Menges, Marcus Schmidt, Chandra Shekhar, Vicky Süß, Ruben Hühne, Bernd Rellinghaus, Claudia Felser, Binghai Yan & Kornelius Nielsch
Nature  547, pages 324–327 (20 July 2017)
DOI: 10.1038/nature23005


The conservation laws, such as those of charge, energy and momentum, have a central role in physics. In some special cases, classical conservation laws are broken at the quantum level by quantum fluctuations, in which case the theory is said to have quantum anomalies1. One of the most prominent examples is the chiral anomaly2,3, which involves massless chiral fermions. These particles have their spin, or internal angular momentum, aligned either parallel or antiparallel with their linear momentum, labelled as left and right chirality, respectively. In three spatial dimensions, the chiral anomaly is the breakdown (as a result of externally applied parallel electric and magnetic fields4) of the classical conservation law that dictates that the number of massless fermions of each chirality are separately conserved. The current that measures the difference between left- and right-handed particles is called the axial current and is not conserved at the quantum level. In addition, an underlying curved space-time provides a distinct contribution to a chiral imbalance, an effect known as the mixed axial–gravitational anomaly1, but this anomaly has yet to be confirmed experimentally. However, the presence of a mixed gauge–gravitational anomaly has recently been tied to thermoelectrical transport in a magnetic field5,6, even in flat space-time, suggesting that such types of mixed anomaly could be experimentally probed in condensed matter systems known as Weyl semimetals7. Here, using a temperature gradient, we observe experimentally a positive magneto-thermoelectric conductance in the Weyl semimetal niobium phosphide (NbP) for collinear temperature gradients and magnetic fields that vanishes in the ultra-quantum limit, when only a single Landau level is occupied. This observation is consistent with the presence of a mixed axial–gravitational anomaly, providing clear evidence for a theoretical concept that has so far eluded experimental detection.


Cover pages